
Removal of design problems through refactorings:
are we looking at the right symptoms?

Andre Eposhi, Willian Oizumi
Campus Paranavai - IFPR

Paranavai, Brazil
{aheposhi,oizumi.willian}@gmail.com

Alessandro Garcia, Leonardo Sousa
Informatics Department – PUC-Rio

Rio de Janeiro, Brazil
{afgarcia,lsousa}@inf.puc-rio.br

Roberto Oliveira, Anderson Oliveira
Informatics Department – PUC-Rio

Rio de Janeiro, Brazil
{rfelicio,aoliveira}@inf.puc-rio.br

Abstract—A design problem is the result of design deci-
sions that negatively impact quality attributes. For example, a
stakeholder introduces a design problem when he decides to
addresses multiple unrelated responsibilities in a single class,
impacting the modifiability and reusability of the system. Given
their negative consequences, design problems should be identified
and refactored. The literature still lacks evidence on which
symptoms’ characteristics can be used as strong indicators of
design problems. For example, it is unknown if the density
and diversity of certain symptoms (e.g., violations of object-
oriented principles) are correlated with the occurrence of design
problems. Thus, in this paper, we report a case study involving
two C# systems. We evaluated the impact of refactoring, focused
on removing design problems, on the density and diversity of
symptoms. Results indicate that refactored classes usually present
higher density and diversity of symptoms. However, the density
and diversity of some symptoms, such as the violation of object-
oriented principles, was not predominantly higher in refactored
classes. Moreover, contrary to our expectations, refactorings
caused almost no positive impact on the density and diversity
of symptoms.

Index Terms—design problem; design smell; technical debt;
refactoring; code smell

I. INTRODUCTION

A software system must provide value through its function-
alities and should satisfy a set of quality attributes, such as
maintainability, reliability, and efficiency [1], [2]. Neglecting
quality attributes can lead to the introduction of design prob-
lems [3]–[5]. A design problem is the result of stakeholders’
decisions that negatively impact the quality attributes [3]–
[5]. The degradation of quality attributes, in the form of
design problem, causes negative consequences such as massive
refactoring, or even the software discontinuation [6]. Hence,
developers have to identify and remove them as early as
possible.

The identification of design problems is far from trivial [7]–
[11]. It usually occurs based on the localization of symptoms
such as code smells [12], [13] and violation of object-oriented
principles [14]. In fact, developers tend to combine multiple
symptoms to identify design problems in practice [7], [15]–
[17], in which they use the density and diversity of symptoms

This work was supported by CNPq (grants 153363/2018-5, 434969/2018-
4, 140919/2017-1, and 312149/2016-6), CAPES (grant 175956) and FAPERJ
(grant 22520-7/2016).

during the identification [7], [18]. Density indicates the num-
ber of symptom instances affecting a code element (e.g., class),
and diversity indicates how many different types of symptoms
a code element contains.

Even though previous studies found that developers rely
on and combine multiple symptoms [7], [19], they did not
investigate to what extent these multiple symptoms manifest
in elements affected by design problems. For instance, some
type of symptom may appear homogeneously in all classes,
whether they are affected by design problems or not. There-
fore, these studies may be misguiding other studies that want
to investigate how to support developers in identifying design
problems.

To address this matter, we investigated 1,468 classes from
two C# systems. First, we identified the classes with design
problems, in which we searched for refactoring tasks that were
aimed at removing design problems. Second, we collected dif-
ferent symptoms in the refactored classes. Third, we analyzed
whether refactored classes presented more or less symptoms
and symptom types when compared to other classes in the
system. Finally, we evaluated the impact of refactoring tasks
on the density and diversity of symptoms. Our results indicate
that code smells and internal attributes, such as coupling
and complexity, can be strong indicators of design problems.
However, the density and diversity of some symptoms, such as
the violation of object-oriented principles, were not predomi-
nantly higher in refactored classes. In addition, unexpectedly,
refactorings caused almost no positive impact on the density
and diversity of symptoms.

II. BACKGROUND

Design problems negatively impact quality attributes [3]–
[5], [20], [21]. For example, a design problem related to
reusability may cause consequences such as code duplication
and rework. According to the ISO/IEC 25010 standard [22],
there are eight main quality attributes that should be analyzed
when evaluating software quality. They should be addressed
to systems meet the stakeholders’ expectations. In this study,
we restricted our analyses to quality attributes that appeared
consistently in our target systems during the refactoring tasks.
They are Efficiency, Compatibility, Reliability, and Maintain-



ability. Detailed description about them is available in our
replication package1.

Identifying a design problem in a system is difficult, espe-
cially when the source code is the only available artifact. Given
the typical lack of documentation [23], developers have to rely
on certain indicators in the program, the so-called symptoms
[19], to identify and remove design problems. In this study,
we used three symptoms that developers have been using
frequently in the practice. Code smell is the first symptom,
which is a surface indicator of possible design problem [12].
An example of code smell type is the God Class, which
indicates classes that are long and excessively complex.

The second symptom that we used is the violation of
object-oriented principles [14]. Principle violation indicates
the violation of object-oriented design characteristics, such
as abstraction, encapsulation, modularity, and hierarchy. An
example of object-oriented principle is the Single Responsi-
bility Principle, which determines that each class should have
a single responsibility in the system [14]. Internal attributes’
violation is the third symptom, which indicates a violation of
characteristics that are considered fundamental for software
design, such as coupling, cohesion, and complexity. In this
study, we opted for using coupling and complexity as internal
attributes. Coupling indicates the number of classes that a
single class uses [24], and cyclomatic complexity (complexity
for short) measures the structural complexity of the code
[25]. We opted for not collecting cohesion because how to
appropriate measure it is still challenging.

Refactoring is a popular technique to remove design prob-
lems from a system. Refactoring consists in transforming
the source code structure without changing its functional
behaviour [12], [26]. We consider that refactoring is any
sequence of source code changes to improve quality attributes.
For instance, to remove a design problem that impacts the
reusability usually requires refactorings that improve abstrac-
tions based on object-oriented principles such as the De-
pendency Inversion Principle and the Single Responsibility
Principle [14].

III. STUDY DESIGN

Goal and Research Questions. Several studies (e.g., [27]–
[29]) have proposed and evaluated techniques for the iden-
tification of design problems. Nevertheless, in practice, most
of them are not applied by developers. One of the issues of
existing techniques is the high amount of false positives, which
leads developers to have little confidence in the presented
symptoms. Another problem is that most techniques are based
on a single type of symptom. Nevertheless, according to
the literature, developers may combine multiple and diverse
symptoms for confirming the existence of a design problem.
However, unlike what was observed in the study of Sousa
et al. [7], existing techniques only combine symptoms of the
same type (e.g., code smells). In addition, their efficiency for
revealing classes impacted by design problems has not been

1http://wnoizumi.github.io/ICPC2019/

exhaustively validated. Finally, there is little evidence on the
impact of refactoring on design problem symptoms. Thus, in
this paper, we aim at evaluating the relation of design problems
with the occurrence of multiple and diverse symptoms. To
achieve our goal, we defined two research questions:

RQ1. Are the density and diversity of symptoms in
refactored classes different from the density and diversity
in other classes?

With RQ1, we aim at understanding if the design problem
symptoms are denser and more diverse in refactored classes
when compared to other classes. As developers usually refactor
the classes in which they perceive the presence of design
problems, we need to know if such classes, before being
refactored, present higher density and diversity of symptoms
than most regular classes. Answering this question will be
helpful for evaluating whether combining multiple and diverse
symptoms is indeed an effective strategy for identifying and
confirming the existence of design problems.

RQ2. What is the impact of refactoring on symptoms of
design problems?

With RQ2, we want to observe if removing design problems,
through refactoring, impacts the density and diversity of symp-
toms. This question will help us to understand if symptoms
disappear or decrease after developers try to remove design
problems. Based on the answer to this question, it will be
possible to improve existing detection techniques by focusing
on the (types of) symptoms that often decrease or disappear
after refactoring a design problem.

To answer our research questions, we conducted a case
study involving two C# systems. We collected and analyzed
refactoring tasks that were exclusively intended to remove de-
sign problems. Based on manual analyses, we categorized the
tasks according to quality attributes that should be improved by
removing the design problem. After that, we collected multiple
types of design problem symptoms and conducted our data
analysis. Below we provide details about the target systems
and about our procedures for data collection and analysis.

Target Systems. We selected two C# software systems for
conducting our case study: OpenPOS and UniNFe. OpenPOS
is a desktop system that provides sales features, such as
sales registration and cashier closing. OpenPOS has 97 Kilo
Lines of Code (KLOC) and 3,318 commits in the control
version system. UniNFe is a background service that sends
and receives Brazilian electronic invoices. UniNFe has 492
KLOC and 2,373 commits. These projects are suitable for
this study because they present more than two years of source
code history – which is registered in tasks and commits, and
we have full access to their developers for questions and
clarifications.

Data Collection and Analysis. We followed five main steps
for data collection and analysis: (1) finding tasks aimed at
removing design problems, (2) analyzing tasks for discarding



those that are unrelated to the removal of design problems, (3)
classifying tasks according to the improved quality attribute,
(4) collecting information about design problem symptoms,
and (5) running data analysis. Next we present details about
each step.

Task Search and Filtering. In the first and in the second
steps, we selected the tasks of each target project that were
intended to remove design problems. To achieve this goal,
we asked two developers of each project to provide us with
a list of tasks aimed at removing design problems through
refactoring. After that, we conducted an automated search in
the issue tracking system to complement the lists of tasks
provided by stakeholders. Our automated search was based
on a set of keywords that are often associated with design
problems (e.g., structure, interface, and duplicate). The full
list of keywords used in this search are presented in our
replication package. We have defined those keywords based on
the analysis of task descriptions from 50 open source projects.
These keywords often occur in the description of tasks that
aim at removing design problems. After the automated search
with the keywords, we analyzed the resulting list of tasks and
discarded those unrelated to the removal of design problems.

Classifying Tasks According to Quality Attributes. In the
third step, we analyzed and classified each design problem
removal task according to the improved quality attribute. For
this classification, we considered the intention of stakeholders
as manifested in each task description. After identifying the
quality attribute the task was intended to improve, we checked
whether there was any obvious discrepancy between the task
description and the actual changes made. In such cases, the
tasks were not included in our analysis. Based on these
procedures, we selected a total of 33 refactoring tasks.

Collecting Information about Design Problem Symp-
toms. We collected three types of design problem symptoms,
which are: code smells, principle violations, and internal
attributes. As explained in Section II, we selected coupling
and complexity as representatives of internal attributes. Such
symptoms were collected for all classes in the systems, before
and after each refactoring task. For collecting those symptoms,
we used two tools: the Visual Studio Community 2017 [30]
and the Designite tool [31]. Detailed descriptions, sub-types,
detection strategies, and thresholds for all types of symptoms
are available in our replication package. We did not collect
the symptoms in isolation for each refactoring task. Instead,
we collected the symptoms in the last stable revision of the
system before the refactorings and in the first stable revision
after the refactorings. We are aware that this approach causes
refactoring changes to blend with changes from other tasks.
Nevertheless, we have chosen this approach intentionally, since
the changes performed in our target systems are not commited
to the repository individually. Their developers usually make
changes to the repository available only after performing
multiple tasks.

Running Data Analysis. After collecting data about tasks,
source code changes and symptoms, we conducted data analy-
sis for answering our research questions. For answering RQ1,

we classified the classes of each analyzed version into two
groups: refactored classes and other classes (or simply, others).
The former group contains all classes that were refactored for
removing one or more design problems. The latter contains all
other classes in the system.

For both groups, we calculated the mean density of symp-
toms. For code smells and principle violations, the density was
considered as the number of individual instances of symptoms
occurring in a class. For coupling and complexity, since they
are individual numeric values, we considered the density as
being the value itself. Thus, the higher the value of coupling
or complexity, higher will be the density of such symptoms.
We compared the density of both groups by computing the
mean number of individual instances for code smells and
principle violations, and the mean values for coupling and
complexity. Based on this information, we checked whether
there was a significant difference in the means presented by
both groups. To compare the diversity between the two groups,
we considered only code smells and principle violations. We
considered a set of 11 sub-types of code smells and 18 sub-
types of principle violations, which are the ones detected by
the Designite tool. We compared the diversity of symptoms
by calculating the mean number of different sub-types of
symptoms per class in each group. Diversity analysis was not
performed for coupling and cohesion because they are only
represented by numeric values, instead of symptom instances.

Finally, for answering RQ2, we collected and compared the
same data used for answering RQ1. The difference here is that
we compared the density and diversity of classes before and
after the execution of refactoring tasks. Thus, for this question
we only considered classes that were changed by refactoring
tasks. For both research questions, we applied statistical tests
using the R Project tool [32].

IV. RESULTS

A. No Difference in the Symptoms of Refactored Classes?

Since principle violations are strongly linked with software
design quality, we expected this type of symptom to present
significant differences in refactored classes. However, con-
trary to our expectations, principle violation was the type
of symptom for which the difference was smaller in both
systems. Table I shows the mean density of symptoms in
the classes of both groups (refactored and others). Each line
shows, for a symptom type, the mean density of symptoms in
refactored and in other classes. This information is provided
for each system (columns two to five) before and after refactor-
ings. For the OpenPOS system, the mean number of principle
violations for refactored classes is 0.80 while for other classes
is 0.75. The difference is a little bit higher in the UniNfe
system, being 2.23 for refactored classes and 1.13 for other
classes, which may be still considered a small difference. This
was not expected because our anecdotal knowledge suggests
that classes with design problems tend to have more design-
related symptoms than other classes.

For code smells, coupling, and complexity, we observed
a notable difference when comparing refactored classes with



TABLE I
MEAN DENSITY OF SYMPTOMS IN REFACTORED CLASSES AND IN OTHERS

Symptom Type
Mean Density

OpenPOS UniNFe
Refactored Others Refactored Others

Before Refactoring Tasks
Principle Violations 0.80 0.75 2.23 1.13
Code Smells 35.84 4.10 41.64 1.41
Coupling 46.54 18.62 37.61 11.32
Complexity 46.39 13.60 124.74 16.97

After Refactoring Tasks
Principle Violations 0.72 0.76 2.40 1.49
Code Smells 35.46 3.76 41.35 1.71
Coupling 49.05 17.60 39.07 11.75
Complexity 47.83 12.42 133.81 16.85

others. This difference indicates the density of such symptoms
may be used as a strong indicator of design problems. The
type that stood out most in both systems was the code smell.
For both systems, the density of code smells was more than
8 times higher in refactored classes.

We applied the Mann-Whitney-Wilcoxon test to check
whether there is a true difference in the density distribution.
This statistical test indicated, with a confidence level of 95%
and p-value smaller than 0.0001, that the distribution of density
of code smells in refactored classes is different from the
distribution of density of code smells in other classes. The
raw data and the detailed results of this statistical test are
available in our replication package. We observed that code
smell density for refactored classes is often higher than the
code smell density for other classes in the system. We also
observed several outliers in the distribution of code smells
for others. Many of these outliers may be classes affected by
design problems that were not refactored by developers.

Diversity of symptoms is also more significant for code
smells. Table II shows the diversity of symptoms for code
smells and for principle violations. This table follows an
organization similar to Table I, providing the mean diversity
of each symptom type. In both systems, the diversity of code
smells was significantly higher in refactored classes when
compared to other classes in the systems. For refactored
classes, the diversity of code smells was more than three
times higher in OpenPOS and more than seventeen times
higher in UniNFe. The Mann-Whitney-Wilcoxon test indicates,
with a confidence level of 95% and p-value smaller than
0.0001, that the diversity mean of code smells in refactored
classes is different from the diversity mean of code smells
in other classes. On the other hand, when we run the same
test for the diversity of principle violations, with a p-value
of 0.09313, we can not reject the null hypothesis for the
OpenPOS system. Therefore, the diversity mean of principle
violations in refactored classes may be equal to the diversity
mean of principle violations in other classes.

The diversity of principle violations is irrelevant for
individual classes. In this case study, diversity of principle
violations was shown to be unrelated to refactored classes.
When compared to other classes, the difference in diversity
was of 0.05 for OpenPOS and of 0.35 for UniNFe. In addition,
in no case was the diversity of principle violations higher than

TABLE II
MEAN DIVERSITY OF SYMPTOMS IN REFACTORED CLASSES AND IN

OTHERS

Symptom Type
Mean Diversity

OpenPOS UniNFe
Refactored Others Refactored Others

Before Refactoring Tasks
Principle Violations 0.65 0.70 1.16 0.81
Code Smells 1.58 0.44 3.28 0.19

After Refactoring Tasks
Principle Violations 0.60 0.72 1.14 1.07
Code Smells 1.38 0.42 3.52 0.24

1.2. However, this does not mean that principle violations are
useless for identifying design problems. Although density and
diversity of principle violations are not determining factors for
the existence of design problems, principle violations may be
combined with other symptoms for filtering key-classes of the
system that need improvements.

Therefore, based on our analyzes, we conclude that the
density and diversity of symptoms in refactored classes
are, indeed, different from the density and diversity of
symptoms in other classes. However, principle violations, the
type of symptom we thought would be the most relevant to
design problems, did not show significant differences for both
density and diversity of symptoms. Thus, for practitioners, the
density and diversity of code smells may be considered a more
reliable indicator of design problems. In addition, if considered
together with other symptoms they tend to be even more
relevant. For example, we observed that, besides presenting
high density of code smells, some refactored classes also
presented high values for coupling and complexity. Combining
such symptoms may be helpful for finding design problems
that tend to grow with the system evolution.

B. Does Refactoring Reduce Symptoms?

To answer our second research question, we compared the
density and diversity of symptoms in refactored classes, before
and after being refactored. For density, Table I shows the mean
density of symptoms before and after the application of refac-
torings. It is possible to observe that refactorings caused little
impact in all types of symptom. In some cases the mean value
increased while in others it decreased after the refactorings.
However, for none of them there was a significant difference.
To confirm whether there is a significant difference between
the two groups – before refactoring and after refactoring –,
we applied the Mann-Whitney Wilcoxon test. This statistical
test allowed us to check if there is a difference between the
mean of number symptoms before refactoring and the mean
number of symptoms after refactoring. A p-value higher than
0.05 indicates the null hypothesis can not be rejected. In this
case, the null hypothesis is: “true location shift is equal to 0”.

This statistical test revealed p-values of 0.5950 for Principle
Violation, 0.6717 for Code Smells, 0.6043 for Coupling, and
0.7383 for complexity. Thus, it is possible to observe that the
p-value was much higher than 0.05 for all symptom types,
indicating that we can not reject the null hypothesis. Based
on such result, we conclude that refactorings applied in the



systems of this case study did not reduce the density of any
of the four symptom types.

Regarding diversity, we carried out a similar analysis. As
presented in Table II, we computed the mean number of
different categories of code smells and of principle violations.
In this case, again, the difference was marginal for both
symptom types. The mean diversity for principle violations
was reduced in both systems. Nevertheless, it is not possible
to affirm diversity always reduces after refactorings because
the difference was too small. With respect to code smells, we
did not observe similar trends for both systems. In OpenPOS,
there was a reduction in the diversity of code smells. On
the other hand, in UniNFe, we observed increased diversity
of code smells. Thus, for both types of symptom, we were
unable to observe a clear relation between refactoring and
diversity of symptoms. As we could not observe a significant
and consistent reduction in the density or in the diversity of
symptoms, the answer of our second research question RQ2
is that refactorings cause little to no impact in symptoms
of design problems.

V. THREATS TO VALIDITY

The first threat to validity is regarding our sample size.
We are aware that analyzing data from two systems is not
enough for finding generalizable results. We tried to mitigate
this threat by selecting systems with different characteristics.
Another threat is related to the method we used for finding
the refactoring tasks. We may have missed tasks that were
not remembered by the stakeholders or did not contain the
searched keywords. To mitigate this threat, we asked for, at
least, two developers of each system to provide a list of
design problem removal tasks. All participating developers
have knowledge about design problems and have worked in
the systems since their inception.

Still related to the refactoring tasks, it is possible that a
task description demonstrates the intention to remove a design
problem but this does not occur in practice. We partially
mitigate this threat checking whether there was any obvi-
ous discrepancy between the task description and the actual
changes made. Moreover, we collected and analyzed multiple
types of symptoms before and after refactorings.

There is another threat related to the tools used for detecting
symptoms. Aspects such as precision and recall may have
influenced the results of this study. We tried mitigate this threat
by selecting a consolidated state-of-the-practice tool (Visual
Studio) and the only tool we know that is capable of detecting
principle violations in C# systems (Designite). Designite has
been used successfully in other studies [31], [33].

Finally, there is a threat regarding reproducibility. Despite
being open source, the maintenance of our target systems is
controlled by a company. Therefore, we are not allowed to
publish detailed information about the tasks and about the is-
sue tracking system. In order to mitigate this threat, we created
a replication package containing, among other information, the
identification and the category of design problems removed by

each task. In addition, the source code of both systems is fully
available at the SourceForge repository2,3.

VI. RELATED WORK

Some studies investigated the use of symptoms for iden-
tifying design problems [13], [17], [28], [34]–[36]. Sousa’s
et al. [7], for example, found that developers use multiple
symptoms to diagnose design problems in practice. Unfortu-
nately, they did not investigate whether refactored classes had
more symptoms than other classes. Mamdouh and Mohammad
[33] investigated if design problem symptoms are removed as
the system evolves. They found that the density of symptoms
undergo few changes throughout the systems evolution. We
conducted a similar analysis in our research question RQ2.
Nevertheless, our study was focused on refactored classes,
while they analyzed all classes indistinctly.

The impact of refactoring in symptoms was also previously
studied [37]–[39]. For example, Bavota et al. [37] investigated
whether refactorings occur in classes with symptoms such as
the code smells. They found that none of the investigated
symptoms are strong indicators of refactoring. Unlike them,
we found that symptoms such as code smells, cohesion and
complexity are strong indicators of the need for refactoring.
Similar to us, they also observed that smells are not usually
removed by means of refactorings. However, we are the first to
investigate the impact of refactorings on principle violations.
Cedrim et al. [39] also investigated the impact of refactorings
on code smells. Nevertheless, they did not verify whether
density and diversity of symptoms in refactored classes are
different from non-refactored classes.

VII. CONCLUSION

In this paper, we investigated whether design problem
symptoms appear with higher density and diversity in classes
refactored by developers. We also investigated if refactoring
tasks have a positive impact on the density and diversity of
symptoms. To achieve our goal, we conducted a case study
involving two C# open source systems. Our results indicate
that refactorings caused almost no positive impact on the
density and diversity of any type of symptom. Nevertheless,
we also observed that refactored classes have higher density
of code smells, coupling and complexity, when compared to
other classes in the systems. This result indicates that, despite
not being removed by refactorings, some types of symptom
may be indeed strong indicators of design problems. Based on
our observations, as future works, we intend to (1) replicate
this study with more systems and considering more symptom
types, (2) conduct a qualitative evaluation to better understand
our results, and (3) propose a semi-automated technique to
help developers in avoiding design problems during software
development.

2https://sourceforge.net/projects/openposbr/
3hhttps://sourceforge.net/projects/uninfe/



REFERENCES

[1] J. Offutt, “Quality attributes of web software applications,” IEEE
Softw., vol. 19, no. 2, pp. 25–32, Mar. 2002. [Online]. Available:
https://doi.org/10.1109/52.991329

[2] I. Gorton, Essential software architecture. Springer Science & Business
Media, 2006.

[3] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” J. Syst. Softw., vol.
101, no. C, pp. 193–220, Mar. 2015. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2014.12.027

[4] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” IEEE Software, vol. 29,
no. 6, pp. 22–27, Nov 2012.

[5] T. Besker, A. Martini, and J. Bosch, “Time to pay up: Technical
debt from a software quality perspective,” in Proceedings of the XX
Iberoamerican Conference on Software Engineering, Buenos Aires,
Argentina, May 22-23, 2017., 2017, pp. 235–248.

[6] A. MacCormack, J. Rusnak, and C. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Manage. Sci., vol. 52, no. 7, pp. 1015–1030, 2006.

[7] L. Sousa, A. Oliveira, W. Oizumi, S. Barbosa, A. Garcia, J. Lee,
M. Kalinowski, R. de Mello, B. Fonseca, R. Oliveira, C. Lucena, and
R. Paes, “Identifying design problems in the source code: A grounded
theory,” in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 921–
931. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180239

[8] W. Oizumi, L. Sousa, A. Oliveira, A. Garcia, A. B. Agbachi,
R. Oliveira, and C. Lucena, “On the identification of design problems
in stinky code: experiences and tool support,” Journal of the Brazilian
Computer Society, vol. 24, no. 1, p. 13, Oct 2018. [Online]. Available:
https://doi.org/10.1186/s13173-018-0078-y

[9] R. Oliveira, L. Sousa, R. de Mello, N. Valentim, A. Lopes, T. Conte,
A. Garcia, E. Oliveira, and C. Lucena, “Collaborative identification of
code smells: A multi-case study,” in 39th ICSE, SEIP Track, 2017, pp.
33–42.

[10] R. Oliveira, B. Estacio, A. Garcia, S. Marczak, R. Prikladnicki, M. Kali-
nowski, and C. Lucena, “Identifying code smells with collaborative
practices: A controlled experiment,” in 10th SBCARS, 2016, pp. 61–70.

[11] R. M. d. Mello, R. F. Oliveira, and A. F. Garcia, “On the influence of
human factors for identifying code smells: A multi-trial empirical study,”
in 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Nov 2017, pp. 68–77.

[12] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston: Addison-Wesley Professional, 1999.

[13] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Proceedings of the 5th international symposium on
Software visualization; Salt Lake City, USA. ACM, 2010, pp. 5–14.

[14] R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices
in C# (Robert C. Martin). Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2006.

[15] M. Abbes, F. Khomh, Y. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Proceedings of the 15th European Software
Engineering Conference; Oldenburg, Germany, 2011, pp. 181–190.

[16] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and
A. von Staa, “Are automatically-detected code anomalies relevant to
architectural modularity?: An exploratory analysis of evolving systems,”
in AOSD ’12. New York, NY, USA: ACM, 2012, pp. 167–178.

[17] W. Oizumi, A. Garcia, L. Sousa, B. Cafeo, and Y. Zhao, “Code
anomalies flock together: Exploring code anomaly agglomerations for
locating design problems,” in The 38th International Conference on
Software Engineering; USA, 2016.

[18] S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia, A. D. Pace, and
C. Marcos, “Identifying architectural problems through prioritization of
code smells,” in SBCARS16, Sept 2016, pp. 41–50.

[19] L. Sousa, R. Oliveira, A. Garcia, J. Lee, T. Conte, W. Oizumi,
R. de Mello, A. Lopes, N. Valentim, E. Oliveira, and C. Lucena,
“How do software developers identify design problems?: A qualitative
analysis,” in Proceedings of 31st Brazilian Symposium on Software
Engineering, ser. SBES’17, 2017.

[20] W. Oizumi, A. Garcia, T. Colanzi, M. Ferreira, and A. Staa, “When
code-anomaly agglomerations represent architectural problems? An ex-

ploratory study,” in Proceedings of the 2014 Brazilian Symposium on
Software Engineering (SBES); Maceio, Brazil, 2014, pp. 91–100.

[21] W. Oizumi, A. Garcia, T. Colanzi, A. Staa, and M. Ferreira, “On the re-
lationship of code-anomaly agglomerations and architectural problems,”
Journal of Software Engineering Research and Development, vol. 3,
no. 1, pp. 1–22, 2015.

[22] I. O. for Standardization, ISO-IEC 25010: 2011 Systems and Software
Engineering-Systems and Software Quality Requirements and Evaluation
(SQuaRE)-System and Software Quality Models. ISO, 2011.

[23] P. Kaminski, “Reforming software design documentation,” in 14th
Working Conference on Reverse Engineering (WCRE 2007), Oct 2007,
pp. 277–280.

[24] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, June 1994.

[25] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[26] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan
1990.

[27] E. Murphy-Hill and A. P. Black, “Seven habits of a highly effective
smell detector,” in Proceedings of the 2008 International Workshop
on Recommendation Systems for Software Engineering, ser. RSSE ’08.
New York, NY, USA: ACM, 2008, pp. 36–40.

[28] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA), April 2018,
pp. 176–17 609.

[29] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 488–498. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884822

[30] Microsoft. (2019, February) Visual studio 2017 version 15.9 re-
lease notes. Available at https://docs.microsoft.com/pt-br/visualstudio/
releasenotes/vs2017-relnotes.

[31] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in Proceedings of the 1st International
Workshop on Bringing Architectural Design Thinking into Developers’
Daily Activities, ser. BRIDGE ’16. New York, NY, USA: ACM,
2016, pp. 1–4. [Online]. Available: http://doi.acm.org/10.1145/2896935.
2896938

[32] T. R. Foundation. (2019, February) The r project for statistical comput-
ing. Available at https://www.r-project.org/.

[33] M. Alenezi and M. Zarour, “An empirical study of bad smells during
software evolution using designite tool,” i-Manager’s Journal on Soft-
ware Engineering, vol. 12, no. 4, pp. 12–27, Apr 2018.

[34] N. Moha, Y. Gueheneuc, L. Duchien, and A. L. Meur, “Decor: A method
for the specification and detection of code and design smells,” IEEE
Transaction on Software Engineering, vol. 36, pp. 20–36, 2010.

[35] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on,
May 2015, pp. 51–60.

[36] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa, “Sup-
porting the identification of architecturally-relevant code anomalies,” in
ICSM12, Sept 2012, pp. 662–665.

[37] G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality
and refactoring,” Journal of Systems and Software, vol. 107, pp. 1
– 14, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121215001053

[38] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How
does refactoring affect internal quality attributes?: A multi-project
study,” in Proceedings of the 31st Brazilian Symposium on Software
Engineering, ser. SBES’17. New York, NY, USA: ACM, 2017, pp. 74–
83. [Online]. Available: http://doi.acm.org/10.1145/3131151.3131171

[39] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact
of refactoring on smells: A longitudinal study of 23 software
projects,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 465–475. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106259


