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Abstract—Root canal refactoring is a software development ac-
tivity that is intended to improve dependability-related attributes
such as modifiability and reusability. Despite being an activity
that contributes to these attributes, deciding when applying root
canal refactoring is far from trivial. In fact, finding which
elements should be refactored is not a cut-and-dried task. One of
the main reasons is the lack of consensus on which characteristics
indicate the presence of structural degradation. Thus, we evalu-
ated whether the density and diversity of multiple automatically
detected symptoms can be used as consistent indicators of the
need for root canal refactoring. To achieve our goal, we conducted
a multi-case exploratory study involving 6 open source systems
and 2 systems from our industry partners. For each system, we
identified the classes that were changed through one or more
root canal refactorings. After that, we compared refactored and
non-refactored classes with respect to the density and diversity of
degradation symptoms. We also investigated if the most recurrent
combinations of symptoms in refactored classes can be used as
strong indicators of structural degradation. Our results show that
refactored classes usually present higher density and diversity
of symptoms than non-refactored classes. However, root canal
refactorings that are performed by developers in practice may
not be enough for reducing degradation, since the vast majority
had little to no impact on the density and diversity of symptoms.
Finally, we observed that symptom combinations in refactored
classes are similar to the combinations in non-refactored classes.
Based on our findings, we elicited an initial set of requirements
for automatically recommending root canal refactorings.

Index Terms—refactoring; root canal refactoring; code smell;
object-oriented design principles; dependability attributes; source
code degradation

I. INTRODUCTION

As software systems evolve, they can go through changes
that can lead to their structural degradation. Unfortunately,
the structural degradation can lead software systems to the
discontinuation or at least either significant maintenance effort
or the complete redesign [1]–[4]. This degradation occurs
when stakeholders make decisions that have a negative im-
pact on dependability-related attributes [5]–[7]. An example
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of this scenario is when a stakeholder decides to create
a common system interface to provide access to different
unrelated services. This decision is likely to harm the system
maintainability and extensibility [8].

Developers constantly have to improve the internal structure
of software systems to, in the worst case scenario, repair a
deteriorated code. For this purpose, they have been relying on
one of the most common activities applied during software
maintenance and evolution: refactoring [9]. Refactoring is a
transformation in the source code structure without changing
the functional behavior of the system [9]–[11]. A commonly
applied refactoring tactic is known as root canal refactoring,
which involves a process of exclusively applying refactorings
to reduce the structural degradation [10], [11]. Despite being
an activity aimed at improving dependability-related attributes
of the system’s design, deciding when applying root canal
refactoring is not trivial [12].

Developers need to know where they should refactor the
source code; more specifically, they have to find first what
code elements (packages, classes, methods, and the like) need
to be refactored to reduce the structural degradation [12].
To this end, developers can find and monitor indicators of
structural degradation in the source code, i.e., they need
to rely on symptoms of structural degradation [13]. Code
smell is an example of a symptom. It is a structure in the
system implementation that represents a surface indication
of structural degradation [9]. An example of code smell is
Long Method, which indicates a method that is too long to
understand [9].

After the degradation symptoms have been found, devel-
opers can reduce the structural degradation by applying root
canal refactoring [10]. Hence, one might expect that develop-
ers often apply refactoring in code elements that contain either
multiple symptom instances (density) or different types of
symptoms (diversity). Unfortunately, there is little information
and no much consensus whether the density and diversity of
multiple automatically detected symptoms can be consistent
indicators of the need for root canal refactoring.



Existing studies are mostly focused in investigating the
impact of any refactoring kind in the density of symptoms [14],
[15]. However, none of them investigated the relation of root
canal refactorings with the density and diversity of symptoms.
Thus, we investigated to what extent the density and diversity
of symptoms indicate the need for root canal refactoring. We
also investigated whether root canal refactoring impacts the
density and diversity of symptoms.

To better understand the density and diversity of degradation
symptoms, we conducted a multi-case exploratory study in
which we observed the root canal refactorings applied by
developers. This study involves eight software system: six
open source systems and two systems from our industry
partners. For each software system, we found the classes that
were changed through one or more root canal refactorings, and
then we collected the structural degradation symptoms in all
classes from the system. After that, we compared refactored
and non-refactored classes with respect to the density and
diversity of symptoms. We also evaluated the impact of root
canal refactorings on the density and diversity of these detected
symptoms. Finally, we investigated if the most recurrent com-
binations of symptoms in refactored classes are different from
the recurrent combinations in non-refactored classes.

Upon data analysis, we found that refactored classes usually
present higher density and diversity of symptoms than other
classes. After investigating what happens with the refactored
classes, we did not find a consistent reduction in the density
or in the diversity of symptoms, leading us to conclude that
refactorings cause little to no positive effect in degradation
symptoms. In fact, the effects of refactorings are practically
nonexistent in the core classes that are constantly modified.
We also found that the recurrent combinations of symptoms in
refactored classes are similar to the recurrent combinations in
non-refactored classes. Thus, the combinations by themselves
are not good indicators of structural degradation. Based on
such findings, we elicited an initial set of requirements for
automatically recommending root canal refactorings.

II. BACKGROUND

A. Structural Degradation

Structural degradation occurs when stakeholders make de-
cisions that negatively impact dependability-related attributes
[5]–[7]. An example of structural degradation is the so called
Fat Interface [16]. This form of structural degradation occurs
when a single interface provides multiple and unrelated oper-
ations, making it difficult to use and increasing the chance of
introducing defects to its clients. Due to the negative impact
caused by structural degradation, software systems have often
been discontinued or redesigned when structural degradation
was allowed to persist [3]. Thus, to be able to maintain the
system’s quality, developers need to identify and to confirm
the existence of structural degradation. Next, we present an
example to illustrate how dependability-related attributes may
be impacted by structural degradation.

Figure 1 shows a partial view of the OpenPOS system
before and after a degraded structure has been refactored.

OpenPOS is a system that provides sales features. One of
the functionalities of OpenPOS comprises the generation
of payment slips. In the country where OpenPOS is used,
payment slips serve for clients to make payments at any
bank. Developers of OpenPOS implemented this feature in the
PaymentSlip sub-component. To protect system information,
this sub-component was strongly dependent from the Authen-
tication component.
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Fig. 1. Example of structural degradation impacting Reusability

Unfortunately, the strong dependency with the Authenti-
cation component led to a side effect on the reusability of
PaymentSlip sub-component. Reusability is a sub-category of
maintainability that indicates the degree to which a component
can be re-used in two or more systems [17]. Since PaymentSlip
was so coupled to the Authentication component, it could
not be reused in other systems. In this context, developers
have to refactor the PaymentSlip sub-component to reduce
the coupling with Authentication component. Additionally,
refactoring this kind of structural degradation is fundamental
to avoid code duplication among systems and rework. In
Section II-C, we will explain the structure obtained after the
refactoring.

B. Degradation Symptoms

Sousa et al. [13] identified five categories of symptom
upon which developers frequently rely to identify structural
degradation. Similarly to other related work [18]–[21], they
observed that developers tend to combine multiple symptoms,
taking into account dimensions such as diversity and density to
decide if there is a degradation or not. In this work, we selected
a sub-set of two symptom categories that can be automatically
detected using state-of-the-practice tools, which are the code
smells and the principle violations.

Code smell is a surface indicator of possible structural
degradation [9]. This symptom category have been extensively
investigated by different researchers (e.g., [22]–[25]). Recent
studies [13], [18], [20], [21] suggest that combining multiple



code smells may improve the precision when identifying
structural degradation. An example of code smell type is the
Long Method. This type of smell usually leads to structural
degradation related to modifiability.

In object-oriented systems, structural degradation usually
impact object-oriented design characteristics, such as abstrac-
tion, encapsulation, modularity, and hierarchy. Therefore, the
second symptom category we used comprises the principle
violations, which are symptoms that may indicate the violation
of common object-oriented principles [16]. An example of
object-oriented principle is the Single Responsibility Principle
(SRP). The SRP determines that each class should have a
single and well defined responsibility in the system [16]. An
example of symptom that may be used for finding SRP vio-
lations is the Insuficient Modularization [26]. This symptom
occurs in classes that are large and complex, possibly due to
the accumulation of responsibilities.

Table I shows the descriptions for the 17 types of principle
violations and 10 types of code smells used in this study. The
descriptions are based on the taxonomy of symptoms provided
by Sharma and Spinellis [27], [28].

C. Refactoring

Refactoring consists in transforming the source code struc-
ture without changing the functional behaviour of the system
[9]. Thus, we consider that refactoring is any structural soft-
ware change that is aimed at improving dependability-related
attributes of the system’s design.

According to Murphy-Hill and Black [10], refactoring can
be classified into two tactics, which are floss refactoring
and root canal refactoring. On one hand, floss refactoring is
characterized by refactoring changes intermingled with other
kinds of source code changes, such as adding new features
and fixing bugs. The aim of floss refactoring is to keep
structural quality as a means to achieve other goals. On the
other hand, root canal refactoring aims at exclusively reducing
structural degradation. A root canal refactoring consists of only
refactoring changes; it is not performed in conjunction with
other non-refactoring changes. Thus, in this paper, our focus
is on root canal refactorings as they are explicitly aimed to
reduce structural degradation. Thus, from now on, whenever
we talk about refactoring in this paper, we’ll be referring to
root canal refactoring.

To illustrate our definition of refactoring, let’s return to
the example of Figure 1. As previously discussed, multiple
different systems of the same company began to require a pay-
ment slip feature. Therefore, developers were asked to remove
the reusability degradation by refactoring the PaymentSlip
sub-component. The refactoring consisted of introducing an
interface for authentication. This way, each system that needs
to use the PaymentSlip component must specify an authen-
tication component that meets the interface specifications
required by PaymentSlip. After refactoring the PaymentSlip
sub-component, besides fixing the structural degradation, it
is expected the removal of symptoms such as the Hub-Like
Modularization (Table I).

TABLE I
SHORT DESCRIPTION FOR THE SYMPTOMS USED IN THIS STUDY

Symptom Type Description
Category 1 - Code Smells

Abstract Function
Call From
Constructor

A constructor that calls an abstract method

Complex Conditional A conditional statement that is complex
Complex Method A method that has high cyclomatic complexity
Empty Catch Block A catch block of an exception that is empty
Long Identifier An identifier that is excessively long
Long Method A method that is too long to understand
Long Parameter List A method that accepts a long list of parameters
Long Statement A statement that is excessively long
Magic Number When an unexplained number is used in an expression
Missing Default A switch statement that does not contain a default case

Category 2 - Principle Violations
Broken
Hierarchy

A supertype and its subtype that conceptually do not
share an ”is a” relationship

Broken
Modularization

When data and/or methods that should have been into a
single abstraction are spread across multiple abstractions

Cyclic Dependent
Modularization

When two or more abstractions depend on each other
directly or indirectly

Cyclic
Hierarchy

A supertype in a hierarchy that depends on any of its
subtypes

Deep Hierarchy An inheritance hierarchy that is excessively deep
Deficient
Encapsulation

The accessibility of one or more members of an
abstraction is more permissive than actually required

Hub Like
Modularization

An abstraction that has dependencies with a large
number of other abstractions

Imperative
Abstraction When an operation is turned into a class

Insufficient
Modularization

An abstraction that has not been completely
decomposed

Missing
Hierarchy

When a design segment uses conditional logic instead
of polymorphism

Multifaceted
Abstraction

An abstraction that has more than one responsibility
assigned to it

Multipath
Hierarchy

A subtype that inherits both directly as well as indirectly
from a supertype

Rebellious
Hierarchy

A subtype that rejects the methods provided by its
supertype(s)

Unexploited
Encapsulation

A client class that uses explicit type checks instead of
exploiting the variation in types already encapsulated
within a hierarchy

Unnecessary
Abstraction An abstraction that is actually not needed in the system

Unutilized
Abstraction An abstraction that is left unused

Wide Hierarchy An inheritance hierarchy that is too wide

III. STUDY DESIGN

A. Goal and Research Questions

Several studies (e.g., [29]–[31]) have proposed and eval-
uated techniques for the detection of structural degradation.
Nevertheless, in practice, most of them are not applied by
developers. One of the issues of existing techniques is the
high amount of false positives [21], [32], which may lead
developers to have little confidence in the presented symptoms.
Another problem is that most techniques are based on a single
category of symptom. However, according to the literature,
developers may combine multiple and diverse symptoms for
confirming the existence of a structural degradation. In this
sense, there are techniques that work with multiple symp-
toms [19], [21]. Still, unlike what was observed in the study of
Sousa et al. [13], existing techniques only combine symptoms
of the same category (e.g., code smells). In addition, their
efficiency to reveal classes impacted by structural degradation
has not been exhaustively validated. Finally, there is little
evidence on the impact of root canal refactoring on symptoms
such as principle violations. Thus, in this paper, we aim at



evaluating the relation of root canal refactorings with the
occurrence of multiple and diverse degradation symptoms. To
achieve our goal, we defined the following research questions:

RQ1. Are the density and diversity of degradation symp-
toms in (root canal) refactored classes different from the
density and diversity in other classes?

With RQ1, we aim at understanding if the degradation
symptoms are denser and more diverse in refactored classes
when compared to other classes. As root canal refactorings
should be applied to classes impacted by structural degradation
[10], we need to know if such classes, before being refactored,
present higher density and diversity of symptoms than most
regular classes. Answering this question will be helpful for
evaluating whether combining multiple and diverse symptoms
is indeed an effective strategy for identifying and confirming
the existence of structural degradation.

RQ2. Do classes modified by root canal refactorings
present structural improvement in the medium term?

With RQ2, we want to observe whether the expected
improvements of root canal refactorings impact the density
and diversity of symptoms. This question will help us to
understand if symptoms disappear, decrease, or increase in the
medium term after the application of root canal refactorings.
In this context, we consider medium term as being the next
release after refactoring. With this research question we will
also be able to better understand if the refactorings performed
in practice have been effective, according to the measurement
provided by the investigated symptom categories.

RQ3. Are the combinations of symptoms in (root canal)
refactored classes different from the combinations in
other classes?

The aim of RQ3 is to investigate whether combinations of
symptoms can be used to differentiate refactored classes from
other classes. In addition, this research question will help us to
understand which combinations of code smells and principle
violations are often refactored by the developers of our target
systems. Based on the findings, it may be possible to prioritize
degraded classes based on the combinations of symptoms that
developers refactor more often.

To answer our research questions, we conducted a case
study involving multiple and diverse software systems. We
collected and analyzed source code changes due to root canal
refactoring , i.e., changes that were exclusively dedicated to
fixing structural degradation. After that, we collected multiple
types of code smells and principle violations and conducted
our data analysis. Next, we provide details about the target
systems and about our procedures for data collection and
analysis.

TABLE II
CHARACTERISTICS OF TARGET SYSTEMS

Name Platform Domain Size
(LOC)

# of
Commits Releases

Partners’ Systems
OpenPOS .Net/C# Enterprise 97,000 3,318 67, 68
UniNFe .Net/C# Enterprise 492,000 2,373 345, 362

Open Source Systems
Achilles Java Tool 83,124 1,188 1.0-beta, 3.0.0, 5.1.0

Ant Java Tool 137,314 13,331 15 141, 163 170,
180

Derby Java Database 1,760,766 8,135 10.3.2.1, 10.5.3.0,
10.7.1.1

Elasticsearch Java Engine 578,561 23,597 1.2.2, 1.5.0, 2.3.0
MPAndroidChart Android/Java Library 23,060 1,737 1.0.1, 2.1.0, 2.2.4

Tomcat Java Middleware 668,720 18,068
7.0.0-RC1, 7.0.8,
7.0.35, 7.0.57,
7.0.67, 8.5.9

B. Target Systems

Table II shows the target systems of this paper. Columns two
to five of Table II show respectively the: platform, the system
domain, the size in Lines of Code (LOC), and the number of
commits. Column six shows the releases of each system in
which we collected degradation symptoms.

Open Source Systems. As presented in Table II, we
selected six open source systems for this study: Apache Ant,
Apache Derby, Apache Tomcat, Achilles, Elasticsearch, and
MPAndroidChart. To select these systems, we first selected 50
open source systems in which we applied a set of filtering
criteria (Section III-C). We aimed at selecting a set of repre-
sentative systems from different domains.

Partners’ Systems. To make our data sample more het-
erogeneous, we selected two C# systems from our industry
partners. The first system is OpenPOS, a desktop system
that provides sales features, such as sales registration and
cashier closing. UniNFe is a background service that sends and
receives electronic invoices. These projects are suitable for this
study because each of them presents more than one hundred
classes that were refactored due to structural degradation.
In addition, their root canal refactorings are documented in
specific refactoring tasks. Finally, we had full access to their
original developers for questions and clarifications.

C. Data Collection and Analysis

We followed three main steps for data collection and
analysis: (a) finding root canal refactorings, (b) collecting
information about structural degradation symptoms, and (c)
running data analysis. Next we present details about each step.

a) Finding root canal refactorings: In the first step,
we searched for source code changes that were exclusively
intended to fix structural degradation. To achieve this goal, we
adopted different procedures for the partners’ systems and for
the open source systems. To select the open source systems,
we started by analyzing a database containing information
about 50 open source projects. We created and validated this
database in previous studies [15], [33] in which we collected
information about the projects’ history of changes, commit
messages, and performed refactorings. We used Refactoring
Miner 0.2.0 [34] to automatically detect refactorings of 11



different types. Due to space constraints, the description of
refactoring types are presented in our replication package1.

Since Refactoring Miner is unable to differentiate root canal
from floss refactoring, we identified and filtered the root canal
refactorings based on the following filter: (1) the selected
refactorings should be occurring in groups of two or more
refactorings, and (2) the refactorings withing a group should
have been detected in the same commit or in sequential com-
mits. As a result, this filter has helped us to find refactorings
that changed multiple source code structures and, therefore,
had a greater chance of being root canal refactorings. After
filtering, we discarded the systems with less than 10 refactored
classes since it would be a very small sample of classes.
In this way, we have reduced our sample of systems to the
6 open source systems presented in Table II. We also tried
to apply a second filter by considering the commit message
associated with each refactoring change. With this filter we
would only select the refactorings for which the associated
commit message contained any variation of the word refactor
(e.g., refactoring, Refactor, etc). However, the resulting sample
of refactorings was very small, which meant that the results
would not be statistically significant. Thus, we decided to use
this second filter only as a parameter of comparison for the
results obtained with the first filter.

To find refactorings in partners’ systems, we asked two
original developers of each project to provide us with a
list of tasks aimed at root canal refactoring. After that, we
conducted an automated search in the issue tracking system
to complement the lists of tasks provided by developers. Our
automated search was based on a set of keywords that are
often associated with structural degradation (e.g., structure,
interface, and duplicate). We have defined those keywords
based on the analysis of task descriptions from 50 open
source projects from our previously mentioned database. These
keywords often occur in the description of tasks that aim
at improving dependability-related attributes. After the auto-
mated search with the keywords, we, together with the two
developers, analyzed the resulting list of tasks. We discarded
those that could not be characterized as root canal refactorings.

b) Collecting information about degradation symptoms:
As presented in Section II, we collected two categories of
structural degradation symptoms: code smells and principle
violations. We used the Designite tool to collect these symp-
toms [35]. We selected this tool because it detects the same
set of symptoms for both C# and for Java programs, thus,
keeping the consistency regarding the detection strategies for
both programming language. Detailed descriptions, detection
strategies, and thresholds for all types of symptoms are avail-
able in our replication package.

As illustrated in Figure 2, we collected the symptoms in
the last release of the system before refactorings and in the
first release after refactorings. The releases presented in the
last column of Table II are the ones that we collected the
symptoms. We are aware that this makes refactoring changes

1http://wnoizumi.github.io/ISSRE2019/

to be mixed with other changes. Nevertheless, we have chosen
this approach intentionally, since we wanted to evaluate if
the possible structural improvements caused by root canal
refactorings persist in the medium term.
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Fig. 2. Collection of symptoms for data analysis

c) Running data analysis: After collecting data about
tasks, source code changes and symptoms, we conducted the
data analysis to answer our research questions. To answer
RQ1, we divided our dataset into two groups: Refactored
Classes and Other Classes (or simply, Others). The first one
is composed by all classes for which we found one or more
refactorings. The second group is composed by all classes in
the systems that are not in the former group.

For both groups, we calculated the density and diversity
of symptoms. Density represents the number of individual
instances of symptoms occurring in a class, while diversity
represents the number of different symptom types occurring
in a class. We compared the density of both groups by
computing the code smell and principle violation distributions.
We compared the diversity of symptoms by calculating the
distribution of symptom types quantity. As previously ex-
plained, we considered 10 types of code smells and 17 types of
principle violations. Based on the collected data about density
and diversity, we used the Mann-Whitney Wilcoxon statistical
test to check whether there was a significant difference in the
distributions presented by both groups.

To answer RQ2, we collected and compared the same data
used to answer RQ1. The difference here is that we compared
the density and diversity of classes collected in releases before
and after the execution of root canal refactorings. Hence, for
this question, we only considered classes that were changed
by root canal refactorings. Additionally, with the help of
developers from our industry partners, we conducted further
analysis to better understand the obtained results.

Finally, to answer RQ3, we performed a threefold analysis.
First, we investigated the number of classes affected by 170
pairwise combinations of code smell types with principle
violation types. Second, we generated two rankings for the
combinations based on the number of refactored (1st ranking)
and non-refactored (2nd ranking) classes affected by each
combination. Then, we applied the Spearman’s rank correla-
tion rho statistical test to compare both rankings. Finally, we
evaluated the relevance of symptom combinations for recom-
mending root canal refactorings. Our rationally for combining
symptoms from different categories is that they could be
stronger indicators of degradation. We also tried to investigate



combinations with more than two symptoms. However, those
combinations were rare and not observed in more than two
systems. Conversely, combinations with only two symptoms
from different categories occurred frequently.

IV. RESULTS

A. Density and Diversity as Consistent Indicators

Table III shows the mean density of symptoms in the classes
of both groups (refactored and others). Each line shows,
for a symptom category, the mean density of symptoms in
refactored classes (Ref.) and in other classes (Others). This
information is provided for each system before and after
refactorings.

For code smells, we observed a notable difference when
comparing refactored classes with others in all target systems.
This difference indicates that the density of smells can be
used as a strong indicator of structural degradation. For the
most extreme cases (OpenPOS and UniNFe), the density of
smells was more than 8 times higher in refactored classes.
Analyzing the dataset, we also observed several outliers in the
distribution of code smells for Others. Many of these outliers
may be classes affected by structural degradation that were
not changed in root canal refactorings.

Principle violations, in general, were denser in refactored
classes when compared to other classes. However, for all target
systems the observed difference was small. The system that
presented the greatest difference regarding principle violations
was the UniNFe, where the density of violations was almost
two times higher in refactored classes. Nevertheless, in all
target systems, the density of principle violations in refactored
classes (before refactoring) was higher than in other classes.

We applied the Mann-Whitney Wilcoxon test to check
whether there was a statistically significant difference in the
density distribution. Table IV summarizes the results for all
systems. The results related to density, in the context of
RQ1, are presented in the second (for principle violation) and
fourth (for code smell) columns and in lines four to eleven
of Table IV. A p-value smaller than 0.05, means that the
distribution of density of symptoms in refactored classes is
different from the distribution of density in other classes. The
raw data and the detailed results of this statistical test are
available in our replication package.

The tests showed that, for all systems, the smell density
in refactored classes was significantly different from the
smell density in other classes. On the other hand, when
we ran the same test for the density of principle violations,
we cannot reject the null hypothesis for the OpenPOS and
MPAndroidChart systems. Therefore, the density distribution
of principle violations in refactored classes may be equal
to the density distribution of principle violations in other
classes for some systems. For MPAndroidChart, this result
is partially explained by the sample size, since we found
only 18 refactored classes in this system. The explanation for
OpenPOS, is the fact that its refactorings were more focused
on fixing modifiability degradation. Such issues generally do
not manifest themselves in the form of principle violations,

since they do not affect aspects such as abstraction and
hierarchy. In any case, to achieve greater generalization, the
density of principle violations must be further investigated in
the context of other systems.

Diversity of symptoms is also more significant for code
smells. Table V shows the diversity of symptoms for code
smells and for principle violations. This table follows the same
organization of Table III, providing the mean diversity of each
symptom category. In all systems, the diversity of code smells
was significantly higher in refactored classes when compared
to other classes in the systems. For refactored classes, the
diversity of code smells was more than five times higher in
Ant and more than seventeen times higher in UniNFe, for
example. Similarly to what we observed regarding the density
of symptoms, the statistical tests (3rd and 5th columns of
Table IV) revealed that, for all target systems, the diversity
mean of code smells in refactored classes is different from
the diversity mean of code smells in other classes. However,
regarding diversity of principle violations, we cannot reject
the null hypothesis for the OpenPOS and MPAndroidChart
systems. The rationale for explaining the diversity results in
these two systems is the same as that used to explain the
density results.

When we applied the second filter in the refactorings of
open source systems (Section III-C), the density and diversity
averages remained similar. The refactored classes continued
to present higher density and diversity of symptoms when
compared to other classes. This second filtering made the
averages of most open source systems more similar to the
averages observed in the partner systems. For the Derby
system, for example, the mean density of both smells and
violations in refactored classes became significantly higher:
2.50 for violations and 29.25 for smells. Therefore, based on
our analyses, we conclude that the density and diversity
of symptoms in refactored classes are, indeed, different
from the density and diversity of symptoms in other
classes. However, for two out of eight target systems, principle
violations did not show significant differences for both density
and diversity of symptoms. This indicates that we should, in
future work, test our hypotheses on another set of systems to
verify if the results converge. In addition, the results observed
here indicates that the density and diversity of code smells
may be considered a more reliable indicator of structural
degradation, according to the criteria adopted by developers
to decide when to conduct root canal refactorings.

B. Low Reduction of Symptoms After Refactoring

Table III shows the mean density of symptoms before
and after the application of refactorings. It is possible to
observe that refactorings caused little impact on all symptom
categories. In some cases the mean value increased while in
others it decreased after the refactorings. However, for most
of them, there was not a significant difference. To confirm
whether there is a significant difference between the two
groups – before refactoring and after refactoring –, we applied
the Mann-Whitney Wilcoxon test. In all target systems, the test



TABLE III
MEAN DENSITY OF SYMPTOMS IN REFACTORED CLASSES AND IN OTHERS

Category
Mean Density of Symptoms

OpenPOS UniNFe Achilles Ant Derby Tomcat Elasticsearch MPAndroidChart
Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others

Before Refactoring
P. Violation 0.806 0.756 2.238 1.134 1.632 1.073 1.802 1.068 1.802 1.068 1.801 1.032 1.632 1.042 1.250 1.138
Code Smell 35.843 4.102 41.642 1.415 16.775 4.578 10.985 1.810 10.985 1.810 23.72 3.731 14.475 6.380 21.62 9.317

After Refactoring
P. Violation 0.725 0.768 2.404 1.497 1.666 1.043 1.921 1.070 1.921 1.070 1.794 1.020 1.557 1.082 1.625 1.127
Code Smell 35.462 3.765 41.357 1.719 32.055 4.463 12.156 1.840 12.156 1.840 21.339 3.691 24.242 7.440 18.687 8.475

TABLE IV
P-VALUES OF THE MANN-WHITNEY WILCOXON TEST FOR RESEARCH

QUESTIONS RQ1 AND RQ2

System Principle Violation Code Smell
Density Diversity Density Diversity

RQ1 - refactored classes and others
OpenPOS 0.18 0.12 <0.01 <0.01
UniNFe <0.01 0.03 <0.01 <0.01
Achilles <0.01 0.01 <0.01 0.01
Ant <0.01 <0.01 <0.01 <0.01
Derby <0.01 <0.01 <0.01 <0.01
Elasticsearch <0.01 0.01 <0.01 <0.01
MPAndroidChart 0.76 0.52 <0.01 0.04
Tomcat <0.01 <0.01 <0.01 <0.01

RQ2 - before and after refactoring
OpenPOS 0.62 0.68 0.54 0.32
UniNFe 0.98 0.88 0.72 0.68
Achilles 0.72 <0.01 0.06 0.06
Ant 0.33 0.30 0.59 0.54
Derby 0.63 0.61 0.96 0.46
Elasticsearch 0.73 <0.01 0.10 <0.01
MPAndroidChart 0.35 <0.01 0.64 0.07
Tomcat 0.96 0.11 0.20 0.34

revealed p-values higher than 0.05 for both code smells and
principle violations, indicating that we cannot reject the null
hypothesis. Based on such result, we concluded that root canal
refactorings applied in the systems of this case study did not
reduce the density of any of the investigated symptoms.

Regarding diversity, we carried out a similar analysis. Ta-
ble V shows the mean number of different types of code smells
and principle violations. In this case, the difference was often
marginal for both symptom categories. Moreover, we did not
observe similar trends for most systems. The mean diversity
for both symptom categories was reduced in some systems
but increased in other systems. The statistical test revealed
p-values higher than 0.05 for both code smells and principle
violations in most systems. The only systems in which we
observed a statistically significant difference for principle
violations were Achilles, MPAndroidChart, and Elasticsearch.
For code smells, only in Elasticsearch the diversity before
and after refactoring was statistically different. Thus, it is not
possible to state that diversity of any symptom category always
reduces or increases after refactorings.

As we could not observe a significant and consistent reduc-
tion in the density or in the diversity of symptoms, the answer
of our second research question RQ2 is that refactorings
cause little to no impact on symptoms of structural
degradation in the medium term. This trend was maintained
even after applying the second filter (Section III-C) to the
refactorings of open source systems.

To better understand why most refactorings did not remove
symptoms, we decided to take a close look at refactored
classes with the help of our industry partners. We selected
and analyzed two sub-sets of refactored classes from OpenPOS
and UniNFe: (1) classes with increased density, and (2) classes
with decreased density. The former is composed by refactored
classes that, after refactorings, presented higher density of
symptoms. The latter is composed by refactored classes that,
after refactorings, presented lower density of symptoms. With
the first set of refactored classes, we expected to identify and
analyze the classes that, even after refactorings, have continued
to worsen the structural quality. On the other hand, with the
second set, we intended to find cases of success in which the
refactorings fixed structural degradation.

Symptoms tend to increase in core classes. Table VI
shows the classes of OpenPOS and UniNFe that presented
higher density for both symptom categories. Analyzing the
classes in which there was an increase in the density of all
symptoms, we asked the developers to describe what they
remember about the implementation and maintenance of each
class. Based on their observations, we noted that many of the
refactored classes are also frequently changed in other tasks. In
addition, many of the refactored classes that presented higher
density after refactorings are considered core classes of the
system. That is, they are linked to fundamental functionalities
of the system. The frmVendaCF class, for example, is a core
class that was changed in 306 different commits, while most
classes in the OpenPOS system were not changed more than 20
times. Such changes may be often conducted without proper
concern for structural quality.

As a result, any improvement promoted by refactorings ends
up getting lost with the structural degradation. Thus, even
being refactored in three different tasks – for improving mod-
ifiability and reusability –, frmVendaCF continued to present
high density and diversity of symptoms. In fact, analyzing
these results from the perspective of the refactoring literature,
other studies [14], [15] have pointed out that refactoring
in general (not just root canal) does not usually remove
symptoms such as code smells. We conjecture that this is
due to the fact that carrying out structural transformations
is usually costly. Therefore, developers end up performing
root canal refactorings only to avoid increasing degradation
in classes that (1) have been poorly designed, or (2) undergo
constant modifications related to changing requirements.

The effects of refactorings only persist in classes that
are not often modified. In OpenPOS and UniNFe, only
the frmCliente class from OpenPOS presented a decreased



TABLE V
MEAN DIVERSITY OF SYMPTOMS IN REFACTORED CLASSES AND IN OTHERS

Category
Mean Diversity of Symptoms

OpenPOS UniNFe Achilles Ant Derby Tomcat Elasticsearch MPAndroidChart
Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others

Before Refactoring
P. Violation 0.650 0.701 1.166 0.815 0.500 0.218 1.157 0.540 1.725 0.876 1.113 0.568 1.143 0.828 0.555 0.363
Code Smell 1.581 0.444 3.285 0.190 0.437 0.175 1.931 0.352 3.412 1.247 2.581 0.529 2.151 0.770 1.388 0.411

After Refactoring
P. Violation 0.600 0.722 1.142 1.076 0.187 0.366 1.280 0.644 1.825 0.974 1.272 0.619 0.459 0.477 1.444 0.765
Code Smell 1.387 0.424 3.523 0.245 0.237 0.280 2.093 0.418 3.700 1.365 2.795 0.569 0.877 0.441 2.555 0.822

TABLE VI
CLASSES WITH INCREASED DENSITY AND DIVERSITY OF SYMPTOMS

System Class

OpenPOS

OpenPOS.Data.Abstract.Faturamento.Lancamento.Movimento.NF.NFBase
OpenPOS.Data.Regra.CFOP.CFOPRegraFiltro
OpenPOS.Data.Abstract.Cadastro.Item.ItemBase
OpenPOS.Desktop.Forms.FrenteCaixa.Lancamento.frmVendaCF

UniNFe

UniNFe.Service.TFunctions
UniNFe.Service.Processar
UniNFe.Service.TaskAbst
UniNFe.ConvertTxt.UniNFeW
UniNFe.Service.TaskConsultarLoteeSocial
NFSe.Components.SchemaXMLNFSe TIPLAN

number of symptoms. We observed that the structural quality
of this class was indeed improved. However, the developers of
OpenPOS revealed to us that frmCliente is not often modified
– it was changed less than 20 times along source code
history. Therefore, a natural conclusion is that the low volume
of changes allowed this class to maintain a good structure.
Nevertheless, structural degradation is critical when impacting
the core classes of the system, such as the ones presented
in Table VI. Thus, developers still need help to effectively
identify and refactor the most relevant structural degradation.

C. Combinations as Indicators of Degradation?

In the previous research questions we observed that devel-
opers tend to apply root canal refactorings in classes with high
density and diversity of symptoms, and that most root canal
refactorings present little to no persistent positive effects on the
density and diversity of symptoms. Thus, aiming at improving
the effectiveness of existing detection techniques for structural
degradation, we investigated which combinations of symptoms
are more likely to indicate structural degradation.

As explained in Section III, we identified the number of
classes affected by 170 pairwise combinations of code smell
types with principle violation types both for refactored classes
and for other classes. Table VII shows the top-10 pairwise
combinations of code smells and principle violations in refac-
tored classes. Each line corresponds to a pairwise combination
of code smell and principle violation. Column 3 shows the
number of refactored classes, considering all target systems,
affected by each pairwise combination. The complete rankings
of combinations for both groups (refactored and other classes)
are available in our replication package.

To observe whether the recurrent combinations can be
used as indicators of structural degradation, we applied the
Spearman’s rank correlation rho test to compare the ranking
of combinations in refactored classes and in other classes. With
a confidence level of 95% and p-value smaller than 0.00001,

TABLE VII
TOP-10 COMBINATIONS OF SYMPTOMS IN REFACTORED CLASSES

Position Combination # of Affected Classes
1 Long Statement-Insufficient Modularization 216
2 Complex Method-Insufficient Modularization 212
3 Magic Number-Insufficient Modularization 178
4 Long Statement-Deficient Encapsulation 145
5 Complex Conditional-Insufficient Modularization 135
6 Complex Method-Deficient Encapsulation 126
7 Long Statement-Unutilized Abstraction 111
8 Magic Number-Deficient Encapsulation 109
9 Complex Method-Unutilized Abstraction 102
10 Long Parameter List-Insufficient Modularization 99

we obtained 0.90 as the correlation coefficient. This result
indicates a strong correlation between the two rankings, which
means that we cannot use the combinations of symptoms
to differentiate degraded classes from other classes. On the
other hand, based on results from the literature (e.g., [36]), we
believe that combinations of symptoms may still be useful in
other contexts, as we will describe in Section V.

V. REQUIREMENTS FOR RECOMMENDING ROOT CANAL
REFACTORINGS

Given the results presented in this paper, we envision a tech-
nique for automatically recommending root canal refactorings
for degraded classes. This technique should take into consid-
eration our insights on the density, diversity, and combination
of symptoms. Therefore, based on such insights, we elicited
four main requirements for the recommendation of root canal
refactorings. As illustrated by Figure 3, requirements involve
the activities of symptom collection, filtering of refactoring
candidates, prioritization of the most relevant candidates, and
summarizing of information about structural degradation. Be-
low we present the detailed description of each requirement.

Detecting
Symptoms

Filtering
Classes

Density and
Diversity of
Symptoms

Prioritizing
Classes

- Change
Frequency
- Combinations
- etc

Summarizing
Structural
Information

Recommending
Refactorings

Fig. 3. Steps taken by a recommender technique based on our proposed
requirements

a) Collecting multiple symptom categories: We ob-
served in this study that, according to the theory proposed by



Sousa et al. [13], we should rely on two or more categories
of symptoms to identify degraded classes. Each symptom cat-
egory will reveal degradation aspects in dependability-related
attributes that other symptom categories may not be able to
capture. For example, while most code smells investigated
in this study are related to modifiability and analyzability,
the principle violations are mostly linked to modularity and
reusability. Our results showed that high density and diver-
sity in both symptom categories is usually associated with
deep structural degradation that is difficult to fix even after
successive refactorings. Therefore, a recommender technique
should combine information about both symptom categories
to provide precise recommendations. In this study, we used
only symptoms provided by the Designite tool. However, rec-
ommendation techniques can implement their own detection
strategies or can be based on symptoms provided by other
tools, such as SonarQube [37] and SpotBugs [38].

b) Filtering classes: Due to several constraints, devel-
opers cannot waste time with the analysis of classes that do
not need to be refactored. Thus, developers would benefit
from a technique that automatically filters and selects only the
classes that have the greatest chance of presenting structural
degradation. Our findings revealed that combining density
and diversity of symptoms such as code smells and principle
violations can be an effective strategy for selecting degraded
classes. The filter may consider only one category of symptom
or it may combine multiple symptom categories. Some state-
of-the-practice tools (e.g., SonarQube) already considers the
density of symptoms to filter and to prioritize elements for
refactoring. However, our study shows that diversity of symp-
toms should also be considered as degraded classes tend to
present higher diversity of symptoms. The combination of both
information could make filtering even more stringent, helping
to save time for developers.

c) Prioritizing classes: Even after filtering classes, there
will be too many candidates for refactoring in medium- and
large-sized systems. Thus, it is fundamental to prioritize the
refactoring candidates according to their relevance. Our study
provided evidence that the core classes of the system should
receive special attention because they are often involved with
the main changes made throughout the system evolution. One
of the characteristics that differentiate these core classes is
the change frequency. Thus, this information can be used as a
prioritization criterion for ranking the refactoring candidates.
The symptom combinations may also be explored as a criterion
to prioritize refactoring candidates. For instance, degraded
classes can be prioritized based on the combinations of symp-
toms that developers, of the team, refactored more often in
previous projects and previous tasks. The effectiveness of this
idea is supported by findings from the literature (e.g., [36]).

Depending on the context, other factors can also be taken
into account to prioritize classes for root canal refactoring.
For instance, developers may want to prioritize refactoring of
degraded classes that will be modified in future tasks. One
of the challenges for the implementation of this criterion is
the identification of which classes will be modified by future

tasks. In our future work, we plan to address this challenge
using the strategy adopted by Kim et al. [39] to locate bugs
based on bug reports. We believe that our proposed criteria
could be helpful for generating more accurate rankings, since
existing prioritization criteria (e.g., [40], [41]) are unable to
present consistent results for every system.

d) Summarizing structural information: One problem
that often hinders the adoption of automated tools is the
difficulty in understanding, exploring, and combining different
symptoms. Knowing beforehand which combinations of symp-
toms are most recurrent, the tool can be prepared to explore the
characteristics of the most recurrent combinations, providing
detailed information about the types of degradation indicated
by each combination. In addition, this information may be
used by the tool to recommend specific refactoring operations,
according to the refactoring operations that are usually associ-
ated with each combination. To provide a more readable and
easy to understand summary, the recommender technique may
apply an approach similar to the one designed by Moreno et
al. [42]. This summarized and readable structural information
would help developers to reason about each degraded class
and to perform more effective refactorings.

Although we have focused our research mostly on main-
tainability, we believe that these requirements can be applied
in the context of other attributes, such as reliability, security,
and performance. We leave for future work the evaluation
of this technique in the context of maintainability and other
dependability-related attributes.

VI. THREATS TO VALIDITY

The first threat to validity is regarding our dataset. Analyz-
ing data from eight systems may not be enough for finding
generalizable results. We mitigated this threat by selecting
systems with different characteristics, developed in different
platforms and with different practices. Another threat is related
to the method used to find the root canal refactorings. For
the systems of our industry partners, we may have missed
refactorings that were not remembered by the developers or
did not contain the searched keywords. To mitigate this threat,
we asked for at least two developers of each system to provide
us a list of root canal refactorings. All participating developers
have knowledge about refactoring and have worked in the
systems since their inception. Still related to the refactorings,
it is possible that a task description demonstrates the intention
to remove structural degradation but this does not occur in
practice. We mitigate this threat by checking, with the help of
developers, whether there was any discrepancy between the
task description and the actual changes made.

In the context of open source systems, we may have missed
several root canal refactorings after applying multiple filters.
This may have influenced the number of outliers observed in
the set of non-refactored classes. However, this has helped
us to drastically reduce the possibility of false positives. In
addition, we discarded systems that had a very low number of
refactored classes after the filters were applied.



There is another threat related to the tools used for detecting
symptoms. Aspects such as precision and recall may have
influenced the results of this study. We mitigate this threat
by selecting Designite, the only tool we know that is capable
of detecting the investigated symptoms both in C# and in
Java systems. Moreover, Designite has been used successfully
in other recent studies [35], [43]. Finally, there is a threat
regarding reproducibility as we are not allowed to publish
detailed information about the refactorings and about the issue
tracking system of our industry partners. Thus, to mitigate this
threat, we created a replication package containing, among
other information, the description of each root canal refactor-
ing identified in their systems.

VII. RELATED WORK

Symptoms of structural degradation. Different studies
have proposed and evaluated techniques that use different
symptoms for identifying structural degradation [20], [23],
[25], [30], [44]. Many of them use only code smells as
symptoms for the identification of structural degradation.
Nevertheless, there is consistent evidence [19], [32], [45],
[46] that individual code smells are not enough to accurately
indicate the presence of structural degradation. For this reason,
Oizumi et al. [20] proposed an alternative approach to identify
structural degradation with the combination of multiple code
smells. In their study, they investigated to what extent code
smells could “flock together” to realize a structural degrada-
tion. They concluded that certain combinations of code smells
are consistent indicators of structural degradation. Despite
such result, in a subsequent study [21], they observed that
their technique may not be effective in practice. In addition,
they did not verify whether multiple code smells occur more
frequently in classes that are actually refactored by developers.

As mentioned, Sousa’s et al. [13] revealed that, in practice,
developers use multiple heterogeneous symptoms to diagnose
structural degradation. However, although they have used a
systematic methodology to propose their theory, it was not
validated. We overcome such limitation by analyzing the
density and diversity of symptoms in refactored classes.

Incidence of symptoms as the system evolves. Mamdouh
and Mohammad [43] conducted an study involving six open
source systems to investigate if degradation symptoms are
removed as the system evolves. They observed that, in general,
the density of symptoms undergo few changes throughout the
systems evolution. We conducted a similar analysis in our
research question RQ2. Nevertheless, our study was focused
on refactored classes, while they analyzed all classes of
systems indistinctly.

Impact of refactoring on symptoms. The impact of
refactoring in symptoms was also vastly studied by different
researchers [14], [15], [47]. Similarly to us, Bavota et al.
[14] investigated whether refactorings occur in classes with
symptoms such as the code smells. Overall, they observed
that none of the investigated symptoms are strong indicators
of need for refactoring. In our case study, unlike them, both
code smells and principle violations showed to be strong

indicators of the need for refactoring. Finally, like us, they
also observed that code smells are not usually removed by
means of refactorings. However, we are the first to investigate
the impact of refactorings on principle violations.

Cedrim et al. [15] also investigated the impact of refac-
torings on code smells. Different from us, they evaluated the
impact of refactorings by each individual commit. As in the
work of Bavota et al. [14], they collected the refactorings
using an automated tool. Although this approach results in
the collection of a larger volume of refactorings, it is not able
to collect only the refactorings intentionally performed by the
developers. Also, they did not analyze whether density and
diversity of symptoms in refactored classes is different from
the density and diversity in other classes.

Finally, a closely related short paper [48] presents prelim-
inary results about the impact of refactorings in the density
and diversity of symptoms. However, this work analyzed a
set of only two systems. In addition, the relation of symptom
combinations with structural degradation was not investigated.

In a nutshell, our work differs from the existing ones in
the following points: (1) we investigated systems developed
with C# and Java while most studies investigated only Java
systems; (2) we did not use an automated approach for finding
refactorings in the systems of our partners, while other studies
used only automated approaches; (3) we restricted our analysis
to root canal refactorings; (4) while most studies are focused
only on code smells or on code metrics, we investigated two
different symptom categories, and (5) we are the only ones
to investigate whether combinations of different categories of
symptoms can be used as indicators of structural degradation.

VIII. CONCLUSION

In this paper, we investigated whether symptoms of struc-
tural degradation appear with higher density and diversity in
classes changed by root canal refactorings. After that, we
investigated if root canal refactorings have a positive impact
on the density and diversity of symptoms. We also investigated
the combinations of symptoms that often occur in classes that
were changed by root canal refactorings. To achieve our goal,
we conducted a case study involving two C# systems from our
industry partners and six open source Java systems.

Our results indicate that refactorings caused almost no
positive impact on the density and diversity of any category
of symptom. Nevertheless, we also observed that refactored
classes have higher density and diversity of code smells when
compared to other classes in the target systems. This result
indicates that, despite not being removed by refactorings, some
categories of symptom may be indeed strong indicators of
structural degradation. Based on our insights, we proposed a
set of four requirements for automatically recommending root
canal refactorings. These requirements are related to the tasks
of: (1) symptom collection, (2) filtering, (3) prioritization, and
(4) summarizing of information about degradation. As future
works, we aim at proposing and evaluating a semi-automated
technique based on the requirements for recommending root
canal refactorings.
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