Qualitative Analysis
Exploring data to create theories

Willian Oizumi - oizumi.willian@gmail.com

Adapted from the material of Leonardo da Silva Sousa and Alessandro Garcia

-3

PUC LES | DI | PUC-Rio - Brasil OPUS Research Group

Summary

Quantitative and Qualitative Analysis
Qualitative Analysis

Grounded Theory (GT)

Theory Representation

ldentifying Design Problems in the Source Code

m m O O W >

Concluding Remarks

Quantitative and Qualitative Analysis

Quantitative Analysis

It usually requires the use of statistical
methods to reach conclusions

It tends to be objective and without room for
interpretations

It is mostly applied for verifying hypotheses

<# Qualitative Analysis

W,

ib{ It often corresponds to an intuitive procedure
"\

It Is based on inference
« what does the absence or presence of a
given element mean?

=

0

by

It Is most malleable at unanticipated events or
the evolution of hypotheses

Qualitative Analysis

<# Qualitative Analysis

e A process of examining and interpreting
data? in order to:

e Elicit meaning
e (Gain understanding

e Develop empirical knowledge

2. A. Straussand J.M. Corbin. 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory .

<# Qualitative Analysis

e
e [t allows researchers to:

e (Get at the inner experience of participants

e Determine how meanings are formed
through and in culture

e Discover and explain rather than test
hypothesis

Dados Qualitativos

K//\;

, \4
Audio Texto Video
Texto como Representante Texto como Objeto
da Experiéncia de Analise
Evocacao Texto de 1
Sistematica Fluéncia Livre Analise de:
Analise de: Analise de: Conversagéo
Narrativa
Listas livres, grupos de rakvras Porf Estrutura
classes, comparagoes 1 eriormance Gramatical
pareadas, testes de
triades e quadros de KWIC eoria de Base
tarefas de substituicao. = Contagem de Palavras ANalises de squemas
1 Redes Semanticas Anélise de Conteudo Classica
. Mapas Cognitivos Dicionarios de Conteudo
Analise de Componentes Inducéo Analitica / Algebra Booleana
Taxonomias Modelos de Decisao Etnografica 3
Mapas Mentais

3.Ryan, G. W. & Bernard, H. R. 2000. Data management and analysis methods.

Grounded Theory (GT)

10

Grounded Theory isa

gualitative research method that uses a
systematical set of procedures to develop
an inductively derived theory about a

'¢ phenomenon from data*

It generates a general explanation of a
process, action or interaction

4. A. Strauss and J.M. Corbin. 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory 1

Grounded Theory in SE

Rise of grounded theory studies in computer science
200

150 -

100 - I

G - e - e e W W
Source: Scopus (Aug 2015); search string: TITLE-ABS-KEY (“grounded theory’),
limited to “computer science”

o &

2011 _
2012 ——
2013 —
2014 EE—

2015 W=

2010 _

2m7_

1996 |
1997 |}
1998 |
1999 |
2001 L

12

What constitutes a grounded theory has been
labeled as a ‘contested concept’

It is now widely acknowledged that there are at
least three main versions of GT°

Consistency with a particular version is
important

5. Adolph, S., Hall, W. and Kruchten, P. 2011, Using grounded theory to study

the experience of software development 13

Versions of Grounded Theory (2/2)

Glaser’s GT (classic or Glaserian GT)
» strong focus on emergence (of research
questions, of codes, of theory)

Strauss and Corbin’s GT (Straussian GT)
* meticulous set of ‘mini-steps’

+ still evolving
* “more free-wheeling flights of imagination”

Charmaz’s constructivist GT
* resulting theory depend on the researcher’s

view
14

Strauss and Corbin’s GT

. Strauss and Corbin go beyond the data by
asking various questions on what might be to
develop the emerging theory

. Asking questions about whom, when, where,
how, with what consequences, and under
what conditions phenomena occur, helps to
‘discover’ important ideas for the theory®

6. Strauss, A. and Corbin, J. 1994. Grounded Theory Methodology: An Overview.
15

:0 Data Collection

. Data can be collected by interview, observation,
records, a combination of them, and others

. It results in large amounts of:
. hand-written notes
. typed interview transcripts

. video/audio taped conversations

. Which contain multiple pieces of data to be sorted
and analyzed

16

:‘ GT Procedures

N
. GT comprises of three procedures:

. Open Coding (15 procedure)
. Axial Coding (2" procedure)

. Selective Coding (3" procedure)

17

Open Coding involves the

breakdown, analysis, comparison,
conceptualization, and categorization of

the data

/’0 Open Coding

Data are deconstructed into the simplest form

possible, examined for commonalities and
sorted into categories

N

“Primeiramente, vamos
passar por todas as
classes que possam ter

uma determinada
anomalia”

Axial Coding consists in examining

the identified categories to establish
conceptual relations between them

N

Axial Coding

. Data are reassembled based on logical
connections between categories

codigo
\

{ { Antes de iniciarem a tarefa de identificacao R
os participantes definem o processo que
utilizarao para identificar as anomalias de

IS paft of

/ - : ies
¢ Inicia analisando o codigo na busca
de um determinado tipo de anomalia

W

Is paxt of

/

\

_—r) \
O Inicia analisando todas as classes na

busca de um determinado tipo de
anomalia

21

Graphic Notation

¢ Antes de iniciarem a tarefa de identificagdo
os participantes definem o processo que

¢ Ap06s definirem o processo para identificar
anomalias de cédigo os participantes recorrem

& Apbs compreenderem sobre as definigées
icipantes comegam a atividade de

utilizardo para identificar as anomalias de is'associated with>| @0 arquivo sobre os tipos de anomalias para is associated-with—— §n se do codigo
cédigo discutirem sobre as definigdes
v W A
is part of is part of is part of is part of is part of is part.of

¢ Inicia analisando todas as classes na
busca de um determinado tipo de
anomalia

¢ Inicia analisando o cédigo na busca
de um determinado tipo de anomalia

¢ Durante a atividade de andlise do

cédigo o Driver posiciona um trecho do

codigo no topo da tela para destacar aos

diemgidsd participantes o trecho que sera
discutido

¢ Durante a atividade de discussdo
sobre as definigdes dos tipos de
anomalias os participantes citam alguns
exemplos para melhor esclarecimento

¢ Durante a atividade de andlise do
c6digo o Driver abre todas as classes do
projeto

¢ Durante a atividade de analise do
cédigo o Driver seleciona um trecho no
cédigo para destacar aos demais

participantes o trecho que sera discutido

A
is associated with

Y

is part of

¢ Ap6s posicionado o trecho no cédigo
no topo da tela o Driver expbe sua
opinidao

is associated with

A

& Ap6s selecionado o trecho no cédigo
que sera discutido o Driver expde sua
opinido

3
is associated with

¥

¢ Ap6s o driver expor sua opinido os
demais membros passam a expor as

¢ Apos selecionado o trecho no cédigo
que sera discutido o Navigator expée
sua opinido

is associated with

is associated with

O Apés o Navigator expor sua opinido

opinides deles os demais membros passam a expor as
opmlées es
v v \

is part of is part of is part of is part of is part of is part of & WHAY
¢ Durante a exposicdo das opiniées os < Durante a exposi¢do das opiniées os ¢ Durante a exposigdo das opmlaes os O Durante a exposig&o das opinides os < Durante a exposi das opinides
participantes ,egongm ao arqswo com participantes definem os thresholds que participantes recorrem aos par definem as métricas a 0 Durante exposlqic: Ces ommbes os surgem divergenc;agg opini 3
as definicbes sobre os tipos de serdo utilizadas para identificar IDE para confirma sua opinido serem uhllzac:)a:;:ram identificar 06 digo J ¢
anomalias para enfatizar sua opinido anomalias especificas anomalias especificas

v
is part of iS part.of

/

is associated with
[O Durante as divergéncias de opinides

\

is associated with

is associated with is associated with

v

¢ Apbs exposigdo das opinides ocorre
a validagdo das anomalias por todos os
membros

is associated with

os participantes recorrem ao arquivo
com as definigdes sobre os tipos de
anomalias

¢ Ap6s a divergéncia de opinido ocorre

‘associated-witf @ validagd@o das anomalias pela maioria
dos

membros

is associated with

< Durante as divergéncias de opinies
os participantes modificam o cédigo
para confirmarem suas explicagoes

is‘associated-with

is associated with

¢ Ap6s a divergéncia de opinido ocorre
a validagdo das anomalias por todos os

membros

22

Selective Coding consists in

refining the categories and relations, and

identify the core category to which all others
are related

:0 Selective Coding

. The “core” category is determined and the
relationships between it and secondary
categories are posited. Core and secondary
category relationships are validated later

. Phase that aims to reach a theoretical
saturation

24

L
Uiy

Theory Representation

25

Representing the Theory

. Theories should be useful instead of being
purely results of an academic exercise

. Sjoberg’s framework’ to represent and describe
the theory

. Categorization

Evaluation

7.J. E.Hannay, D. I. K. Sjoberg, and T. Dyba. 2007. A Systematic Review of Theory
Use in Software Engineering Experiments o6

Sjoberg’s framework

Construct is a basic particle that composes a

theory

« categories identified in the axial and selective
coding

Proposition is an interaction among constructs
* |t comprises the relations established among the
categories

Explanation comprises the factors behind the
propositions
« all data

Scope is the universe to which the theory is applicable

27

Sjoberg’s framework

"=] Technology

' ©
=Y Activity 5'.:':—' Software System

. The typical SE situation is that an actor applies
technologies to perform certain activities on an
(existing or planned) software system

28

Identifying Design Problems
In the Source Code

A Grounded Theory
Leonardo Sousa Alessandro Garcia Baldoino Neto
Anderson Oliveira Jagjoon Lee Roberto Oliveira
Willian Oizumi Marcos Kalinowski Carlos Lucena
Simone Barbosa Rafael de Mello Rodrigo Paes

-3

LES | DI | PUC-RIio - Brasil OPUS Research Group

Software Development

)~
<®
e

‘Q 25%

of discussions in a project are
.-‘ about design’

Software design is a fundamental concern during
the software development process

1. Brunet et al. 2014. Do Developers Discuss Design? (MSR)
30

Design Decisions

& Decisions that affect the system positively

<@
00
+/L
Decisions may have a negative impact on
non-functional requirements

L,

Design Problem is the result of inappropriate
design decisions that negatively impact
non-functional requirements

Example of Design Problem

FACADE ©

IFacade
updateEmployee()
updateComplaint()
updateHealthUnit()

32

FACADE =

i IFacade |

updateComplaint()
updateHealthUnit()

O W

/’0 Example of Design Problem

Vo

FACADE =

IFacade

updateHealthUnit()

/‘0 Example of Design Problem

N
Fat Interface

bl

FACADE =

HEALTHUNIT =
ClassE ClassF

IFacade

updateHealthUnit()

w

Sym PTtoOM is a partial sign or
indication of the presence of a design
problem

36

/’0 Design Problem Symptoms

e
F2_|5J encapsulation violation

@i High coupling FACADE i

HEALTHUNIT =
ClassE ClassF

IFacade

gum—

|--_| unrelated i r_l S:gglrittanding
Services updateHealthUnit()

w

Investigating the Design Problem Identification

RQ: how do developers identify design
problems in source code”

AL=8=[g = [@

developer interface unrelated services fat interface

38

Multi-trial Industrial Experiment

Characterization Training Identification
\ A) ©
c_-{)/// A e
Code Design Design

Smells Patterns Principles

Follow-up

Quality
Attributes

39

- '.E_ﬁ Tl
a5 S

Characterization and

Exp e Follow-up Questionnaires
Examples of Open Coding
Code 1
i+ i Developer mentions that the class readability is
i‘ awful
i Code 2 :
i iDeveloper mentions that there is no way to escape
: from the analyzed implementation ' _
Code 3

Developer mentions that the analyzed
implementation is the standard implementation

..

! Code 4: :
Developer accepts that the class is hard to read

Characterization and
Follow-up Questionnaires

Data Collection

Transcription

Open Coding

Axial Coding

Phase 2: Refining the Axial Coding

Y

Data Collection

Selective Coding

Y

Determining theoretical
saturation

Phase 3: Developing the theory

Writing up the theory

'Raw Transcription

iD11: “The symptoms suggest a possible |
idesign problem. However, none of them
ishould be rigid rules. Often, as it has been
§observed in this experiment, it makes sense |
ito have long methods, message chains or§
[~ TTTTTTITTTTTT " imany parameters (in the method). In some !
icases, we could replace a long string of§
:conditional (statements), but it would make it |
idifficult to
iwas considered long, but its readability was |
ivery clear, which did not justify|
ia refactoring.” !

understand. A

! Examples of Axial Coding

Category 1:

Analysis of non-functional requirement | !

...

Category 2:
Explanation for the existence of the
symptoms

method |

40

Data Collection

__

o e

B =@ Ry R GEEEEEEE Data Collection
- : t Characterization and
_________ e Follow-up Questionnaires | l

41

:‘ Collecting Data

'E Think-aloud Method
Al

QID Audio and Video records

Grounded Theory procedures

42

. Data Collection

l

Transcription

..

: Raw Transcription

:D11: “The symptoms suggest a possible |
:design problem. However, none of them
ishould be rigid rules. Often, as it has been |
:observed in this experiment, it makes sense !
ito have long methods, message chains or |
‘many parameters (in the method). In some !
icases, we could replace a long string of |
:conditional (statements), but it would make it ;
difficult to understand. A method |
:was considered long, but its readability was |
ivery clear, which did not justify |

:a refactoring.”

Raw Transcript: “D6: The readability here is awful, but

__

there is no way to escape from this (implementation).

That is the standard (implementation). (...) indeed, it (the

class) is not easy to ready”

43

Characterization and

Data Collection

{ Raw Transcription

Experiment Follow-up Questionnaires

.

l

iD11: “The symptoms suggest a possible |

idesign problem. However, none of them
:should be rigid rules. Often, as it has been !

:observed in this experiment, it makes sense !
ito have long methods, message chains or |
many parameters (in the method). In some :
icases, we could replace a long string of |
:conditional (statements), but it would make it :

\difficult to understand. A method |
:was considered long, but its readability was !

Examples of Open Coding Transcription
Code 1
Developer mentions that the class readability is
awful
B o i D o o o o s v
: Code 2 ,
iDeveloper mentions that there is no way to escape
from the analyzed implementation | L. foeoo_oo-o-od Open Coding
Code 3
Developer mentions that the analyzed T

implementation is the standard implementation

Code 4:

’
e

.~

ivery clear, which did not justify |
:a refactoring.” :

__

. Raw Transcript: “D6: The readability here is awful, but
there is no way to escape from this (iImplementation).
That is the standard (implementation). (...) indeed, it (the

class) is not easy to ready”

44

Open Coding

Raw Transcript: “D6: The readability here is awful, but there is no way to
escape from this (implementation). That is the standard (implementation). {(...)
indeed, it (the class) is not easy to ready”

Code 1: developer mentions that the class readability is
awful

Code 2: developer mentions that there is no way to
escape from the analyzed implementation

Code 3: developer mentions that the analyzed
iImplementation is the standard implementation

Code 4: developer accepts that the class is hard to read

45

Characterization and

Experiment Follow-up Questionnaires

...

awful

...

...

.

iDeveIoper mentions that there is no way to escapeé

from the analyzed implementation

...

...

. Developer mentions that the analyzed
: implementation is the standard implementation

Code 4:

Data Collection

Transcription

Open Coding

Axial Coding

__

{ Raw Transcription

iD11: “The symptoms suggest a possible |
:design problem. However, none of them:
:should be rigid rules. Often, as it has been |
:observed in this experiment, it makes sense !
ito have long methods, message chains or |
many parameters (in the method). In some :
icases, we could replace a long string of |
:conditional (statements), but it would make it

difficult to understand. A method |

iwas considered long, but its readability was |

very clear, which did not justify!:

:a refactoring.” :
Examples of Axial Coding

Category 1:
Analysis of non-functional requirement

...

"""""""""" Category2:
Explanation for the existence of the
symptoms

. Category 1: analysis of a non-functional requirement

. Category 2: explanation for the existence of the symptom ,_

\
[Code 1: developer mentions
t

hat the class readability is awful)

Code 4: developer accepts that]
the class is hard to read J

Code 2: developer mentions
that there is no way to

escape from the analyzed
Implementation

- J

Code 3: developer mentions
that the analyzed

e .
Category 1: analysis
of a non-functional
requirement

\.

~

Wy

g Category 2:

explanation for the
existence of the

Implementation is the
standard implementation

\ /

N symptom

~

/

47

:‘ Data Collection

We did not achieve the Theoretical Saturation

© © We had to conduct more experiments

We ran the experiments with two more
companies

48

Selective Coding

~ = ! |
a -3 =@ """" """""""" Data Collection
: Characterization and ! i
Experiment

Follow-up Questionnaires

Selective Coding

49

Determining Theoretical Saturation

- =1 : |
no =@ e e Data Collection
) Characterization and ! i
Experiment

Follow-up Questionnaires

v

Selective Coding

Y

Determining theoretical
saturation

50

51

Writing up the Theory

. We had to map the (grounded) theory according to
Sjgberg’s framework
®
. Constructs
. Propositions
. Explanations
. Scope

52

5 companies, 8 systems and 23 developers

l 7‘ 1,161 codes, 9 networks and 16 hours of

video

15 constructs and 18 propositions

53

Theory according to Sjeberg’s framework

Actor: Software Developer

Activity: Identification of Design Problems

Technology: Diagnosis

"9
|

y=— Software System: Source Code

—(®

The theory Is supposed to be applicable in systems in
which developers intend to identify design problems by
analyzing symptoms that manifest themselves in the
source code 54

Actor

T

Software Developer

Software System

T

Software Project

Activity

T

P2
> Conscientiousness P16 Syndrome
> Confiderce (inthe o i SYmIptam
presence of a < IP1 4 Density P5
design problem) < P18
Accuracy P4
Symptom Type PG ™1—P8
P15 P11
Diversity P3
Technology Relation P7
43 ElementRole TTTTT—P9
> Diagnosis P1 T ; Design Problem P10
SYMpIM ADAlYSIS: 4 P17 Affected Elements [«
Epidemic Analysis ‘
Design decisions YYYYY Yy

Identification of Design
Problems

Locating Code Elements
Analyzing Code
Elements

Corfirming a Design
Problem

55

Steps to ldentify Design Problems

)~
<®
e

g; Locating elements

I;Ql Analyzing elements

@ Confirming the problem

Focusing on Specific Steps

56

¢

¢

¢

¢

4

Developers rely on Multiple Symptoms

Code Smells

Violation of Object-Oriented Principles
Violation of Architectural and Design Patterns
Poor Structural Quality Attributes

Violation of Non-functional Requirements

Symptom Helpfulness

Characteristics that developers consider when they choose
the symptoms most likely to help them

|Q5JI Type, Accuracy and Density
|Q5J| Relation and Diversity

Prioritizing Symptoms with these Characteristics

58

Designh Problem Diagnosis

Symptom Analysis

* Analyzing a set of symptoms affecting the
same element
« Combining multiple related symptoms

Epldemlc Analysis

* Analyzing other elements with a similar
set of symptoms
* Prioritizing key elements

Automating the diagnosis

59

Developers’ Factors

.ﬁll Increasing the developers’ confidence

@ Increasing the developers’ conscientiousness

== Justifying the presence of a design problem

Reducing “human factors”

60

Improving Design Problem Diagnosis

)~
<®
e

g; Supporting Multiple Symptoms

— | Personalizing the Filter and Detection of
:Q Symptoms

@ Visualization Support

61

Visualization Support
L

a Concluding Remarks
e

Mature areas rely on (and refine) theories to
g; further advance the field®

influence on how developers identify design

E Theory describing the activities and factors that
_O\ problems

@ Solutions that emerged from the theory and can
improve design problem identification

9. Klaas-Jan Stol and Brian Fitzgerald. 2015. Theory-oriented software
engineering., 63

:0 Further Reading

® Sousa, Leonardo, et al. "ldentifying design problems in
the source code: a grounded theory." 2018 IEEE/ACM
40th International Conference on Software Engineering
(ICSE). IEEE, 2018.

® Sousa, Leonardo. Understanding How Developers
l[dentify Design Problems in Practice. 2018. Tese de
Doutorado. PUC-Rio.

e | azar, Jonathan, Jinjuan Heidi Feng, and Harry
Hochheiser. Research methods in human-computer
interaction. Morgan Kaufmann, 2017.

Identifying Design Problems
In the Source Code

A Grounded Theory
Leonardo Sousa Alessandro Garcia Baldoino Neto
Anderson Oliveira Jagjoon Lee Roberto Oliveira
Willian Oizumi Marcos Kalinowski Carlos Lucena
Simone Barbosa Rafael de Mello Rodrigo Paes

-3

LES | DI | PUC-RIio - Brasil OPUS Research Group

Backup Slides

A Brief Stor

Q2)///

Code Smell isa recurring

structure in source code that may
indicate a deeper problem in a software

system’

1. M Fowler. 1999. Refactoring: Improving the Design of

Existing Code.

zO God Class

| Example of Code Smell

When a class centralizes the system functionality

Main Controller Class

o ——=-—==- + Data_List_Provider
I I + Status
Images | + Mode

I

I

I

| + User /r_. —
————— \'\ + Group

u
I
|
I
|
J

.
|
| ——
| I ErrorSet
|
I
|

+ Date_Time

+ ACL

N p—p———

+ Start()

+ Stop()

7‘%—

+ Initialize()

s
|
|

— - Il
- :l/ + Set_Mode() e ——
:
| |
| |

|

+ Login()

+ Set_Status()
+ Do_This()

+ Do_That()

Figurel

5

|
_—

O O

Collaborative Identification of Code Smells

;8

Pairs
ala

Individuals Groups

Does collaboration affect the effectiveness of
code smell identification?

\]

a Quantitative Results

ol ™
l:,.»rc: < \I ix f/-fi'f'f' e e, ’\'i
& Ji2 5 (R 6
Pairs Individuals

Program A | Program B | Program C
Individuals 3.33 1.38 6.88

Pairs .25 14

‘IW

71

Seeking for Answer

Do you believe that the collaboration helped on the identification of
code smells? Justify

« Yes. Collaboration have as strengths the communication
among members and the possibility of a more precise
analysis because 'n' eyes see more than two |...]

Moreover, 100% of participants believe they have
identified more smells by working collaboratively

/2

e ,
Effectiveness?
~ ma ™
.groups Individuals
Program A | Program B | Program C
Individuals 3.33 1.38 6.88
Groups 5

‘IW

a Quantitative Results
e

/3

Lack Understanding About the Results

Program C
Individuals 6.88

Groups 5

74

Key Components and Concepts (1/5)

. Limit exposure to literature: avoid
comprehensive literature review

. Treat everything as data: quantitative data,
videos, pictures, diagrams...

. Immediate and continuous data analysis:
data collection and analysis are simultaneous

l4s)

Key Components and Concepts (2/5)

. Theoretical sampling: researcher identifies further
data sources based on gaps in the emerging theory
or to further explore unsaturated concepts

. Theoretical sensitivity: ability to conceptualize,
and to establish relationships between concepts

. Coding: process to labeling ‘incidents’ and their
properties in the data

/0

Key Components and Concepts (3/5)

. Concepts: collections of codes of similar content
that allows the data to be grouped

. Categories: broad groups of similar concepts that
are used to generate a theory

. Memoing: researcher writes memos (e.g. notes,
diagrams, sketches) to elaborate categories,
describe preliminary properties and relationships
between categories, and identify gaps

’r’

Key Components and Concepts (4/5)

. Constant comparison: researcher constantly
compares data, memos, codes and categories

. Memo sorting: continuous process of
oscillating between the memos and the
emerging theory outline to find a suitable fit for
all categories that resulted from the coding

/8

Key Components and Concepts (5/5)

. Cohesive theory: researcher attempts to move
beyond superficial categories and develop a
cohesive theory of the studied phenomenon

. Theoretical saturation: the point at which a
theory’s components are well supported and
new data is no longer triggering revisions or
reinterpretations of the theory

/9

