
Push-Pull-Framework

The Push Pull framework is responsible for downloading remote content (pull), or

accepting the delivery of remote content (push) to a local staging area. Content in the

staging area is ingested into the File Manager system by the Crawler Framework. The

Push Pull framework is extensible and provides a fully tailorable Java-based API for the

acquisition of remote content.

Architecture

This section describes the architecture of the Push Pull framework, including its constituent

components, object model, and extension points.

Architectural Components

The major components of the Push Pull Framework are the Daemon Launcher, the

Daemon, the Protocol Layer, and the File Retrieval System, to name a few. The

relationship between all of these components are shown in Figure 1.

Figure 1. Push Pull Components

The Push Pull Framework provides a Daemon Launcher, responsible for creating new

Daemon instances. Each Daemon has an associated Daemon Configuration, and has the

ability to use a File Retrieval Setup extension point. This class is responsible for

leveraging both a Protocol and a File Retrieval System to obtain ProtocolFiles, based on

a File Restrictions Parser that yields eventually a VirtualFileStructure (VFS) model. The

VFS defines what files to accept and pull down from a remote site.

Object Model

The critical objects managed by the Push Pull Framework include:

 Protocol – A means of obtaining content over some file acquisition method, e.g.,

FTP, SCP, HTTP, etc.

 Protocol File - Metadata information about a remote file, including its

ProtocolPath.

 Protocol Path - A pointer to a remote Product file's (or files') location, which can

be used to derive metadata and determine where to place the file in the local

staging area built by the Push Pull Framework.

 Remote Site - Descriptive information about a remote site, including the

username/password combination, as well as an origin directory to start

interrogating.

Each Protocol delivers one or more Protocol Files. Each ProtocoFile is associated with a

single RemoteSite, and each ProtocolFile is associated with a single ProtocolPath. These

relationships are shown in Figure 2.

Figure 2. Push Pull Object Model

Extension Points

Push Pull Framework was constructed by making use of the Factory Method pattern. The

use of this pattern was intended to provide multiple extension points for the Push Pull

Framework. An extension point is an interface within the Push Pull Framework that can

have many implementations. This is particularly useful when it comes to software

component configuration because it allows different implementations of an existing

interface to be selected at deployment time. Each of the core extension points for the

Push Pull Framework is described in TABLE I.

TABLE I. Push Pull Extension Points

Extension Point Description

Protocol

The Protocol extension point is the heart of the Push Pull

framework. It is responsible for modeling remote sites and for

obtaining their content via different Retrieval Methods, using

different File Restrictions Parsers.

Retrieval Method

The Retrieval Method extension point is responsible for

orchestrating download (pull) and acceptance (push) of remote

content.

File Restrictions

Parser

The File Restrictions Parser extension point is responsible for

defining how to accept or decline files encountered by a Retrieval

Method, in essence modeling remote file and directory structures.

System

The extension point that provides the external interface to the Push

Pull Framework services. This includes the Daemon Launcher

interface, as well as the associated Daemon interface, that is

managed by the Daemon Launcher.

