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ABSTRACT
Developers often have to locate design problems in the source code.
Several types of design problem may manifest as code smells in
the program. A code smell is a source code structure that may
reveal a partial hint about the manifestation of a design problem.
Recent studies suggest that developers should ignore smells occur-
ring in isolation in a program location. Instead, they should focus
on analyzing stinkier code, i.e. program locations – e.g., a class or
a hierarchy – a�ected by multiple smells. The stinkier a program
location is, more likely it contains a design problem. However,
there is limited understanding if developers can e�ectively identify
a design problem in stinkier code. Developers may struggle to make
a meaning out of inter-related smells a�ecting the same program
location. To address this matter, we applied a mixed-method ap-
proach to analyze if and how developers can e�ectively �nd design
problems when re�ecting upon stinky code – i.e., a program loca-
tion a�ected by multiple smells. We performed an experiment and
a survey with 11 professionals. Surprisingly, our analysis revealed
that only 36.36% of the developers found more design problems
when explicitly reasoning about multiple smells as compared to
single smells. On the other hand, 63.63% of the developers reported
much lesser false positives. Developers reported that analyses of
stinky code scattered in class hierarchies or packages is often dif-
�cult, time consuming, and requires proper visualization support.
Moreover, it remains time-consuming to discard stinky program
locations that do not represent design problems.
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1 INTRODUCTION
The identi�cation of design problems in the source code is not a
trivial task [6, 31]. A code smell is a structure in the source code that
may provide developers with a partial hint about the manifestation
of a design problem [10]. Examples of code smells are God Class,
Feature Envy and Brain Method. However, the occurrence of a single
smell in isolation in a program often does not represent a design
problem [18, 25, 26]. Recent studies reveal that design problems are
much more often located in stinkier program locations, i.e., a class,
a hierarchy or a package a�ected by multiple smells [1, 18, 25, 26,
38, 39]. For instance, a Fat Interface [19] is a design problem that
often manifests as multiple smells in a program, a�ecting various
classes that implement, extend and use the interface in a program
[26].

The stinkier a program location is, more likely it contains a
design problem [25, 26]. In fact, developers tend to focus on refac-
toring program locations with a high density of code smells, and
ignore those locations a�ected by a single smell [4, 5]. However,
there is limited understanding if developers can e�ectively identify
design problems in stinkier code, i.e. program locations – e.g., a
class or a hierarchy – a�ected by multiple smells. Indeed, existing
techniques tend to focus on the detection and visualization of each
single smell [9, 23, 27, 35]. They do not o�er a summarized view
of inter-related smells a�ecting a program location [26]. Moreover,
previous studies focus on simply analyzing the correlation between
design problems and code smells [17, 26]. They have not inves-
tigated if and how developers are indeed e�ective in the task of
�nding design problems in stinkier code.

Therefore, we do not know whether the analysis of multiple
smells actually provides better precision for the identi�cation of
design problems. Developers may struggle to make a meaning out
of inter-related smells a�ecting the same program location. To ad-
dress this matter, we designed and executed a multi-method study
with 11 professional developers. Our goal was to analyze if devel-
opers can e�ectively �nd design problems when re�ecting upon
multiple smells a�ecting program locations. Developers were asked
to identify design problems in this context. Our study comprised
both quantitative and qualitative analyses.

For the quantitative analysis, we compared the precision of the
developers with a baseline, i.e. situations where only single smells
were given to them. As we want to assess if multiple smells can help
developers to reveal more design problems than single smells, we
divided the developers into two groups. In the �rst group, we asked
them to identify design problems through the analysis of stinky
program locations. In the second group, we asked them to identify
design problems with the analysis of single smells. After that, we
inverted the groups, and we asked them to repeat the identi�cation
of design problems in a second system. In each identi�cation task,
we used the group that identi�ed design problems with single
smells as the control group. Thus, we could use the control group
to measure if the analysis of stinkier program locations can improve
the precision of design problem identi�cation.

In the qualitative analysis, we performed a detailed and system-
atic evaluation through: (1) the careful observation of participants
during the experiment execution, and (2) the conduction of a post-
experiment survey. The objective of this analysis was to identify
the main advantages and barriers of re�ecting upon multiple smells
along the task of identifying design problems. The outcomes of this
analysis helped us to better understand ways to improve support
for the identi�cation of design problems.
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By triangulating the results of both analyses, we noticed that
36.36% of the developers found more design problems when ex-
plicitly reasoning about multiple smells. We found that the un-
derstanding of complex stinky structures helped to con�rm the
occurrence of non-trivial design problems, such as Scattered Con-
cern [12]. Furthermore, we found that 63.63% of the developers
reported much less false positives when analyzing multiple smells
than when single smells. Thus, developers that consider stinky
program locations, instead of isolated smelly code, could identify
design problems with higher precision. However, this study also
showed that developers need better support to analyze stinky pro-
gram locations for revealing design problems. We observed that the
analysis of stinky code may be di�cult and time consuming. For
instance, a prioritization algorithm is required so that developers
do not waste time analyzing stinky program locations not related
to design problems. In addition, developers need better visualiza-
tion support to analyze complex stinky code scattered across class
hierarchies or packages.

The remainder of this paper is organized as follow. Section 2
introduces basic concepts and presents an illustrative example. Sec-
tion 3 describes the settings of our study. Section 4 summarizes
the main results. Sections 5 and 6 present the related work and the
threats to validity, respectively. Finally, Section 7 concludes the
paper.

2 CONTEXTUALIZATION
This section is organized into two subsections. Section 2.1 presents
basic concepts. Section 2.2 brings up an illustrative example of
analyzing stinky code to identify design problems.

2.1 Basic Concepts
Design Problem. A design problem is a design characteristic that
negatively impacts maintainability [31]. Design problems a�ect
program locations like packages, interfaces, hierarchies, classes and
other structures that are relevant for the design of the system [3].
Examples of design problems are Scattered Concern [12] and Fat
Interface [19]. The description of the 8 types of design problems
considered in our study is available in our complementary material
[7]. We opted by selecting these design problems since: (i) they
are often considered as critical in the systems [26] chosen in our
experiment, and (ii) other studies haven shown the relation between
such design problems and code smells [15–18, 26].

Smelly Code. Code smell is a recurring micro structure in the
source code that may indicate the manifestation of a design problem
[10]. A design problem can manifest itself in a program by a�ecting
multiple source code locations. Each of these locations are called
here smelly code. Thus, the developers can analyze the smelly code
to identify a design problem. There are several types of code smell,
which may a�ect a method, a class or a hierarchy. In this paper, we
used nine types of code smell, as described in Table 1. These types
of smell were considered in this study as they occur in the systems
of our experiment (Section 3.3).

Stinky ProgramLocation. Developers can rely on the analysis
of code smells to identify design problems [14, 17, 30]. In fact, recent
studies [1, 18, 26, 39] suggest that the stinkier a program location is,
the more likely it is to be a�ected by a design problem. Stinky code

Table 1: Types of code smell

Type Description

God Class Long and complex class that centralizes the
intelligence of the system

Brain Method Long and complex method that centralizes the
intelligence of a class

Data Class Class that contains data but not behavior related
to the data

Disperse Coupling

The case of an operation which is excessively tied
to many other operations in the system, and
additionally these provider methods that are
dispersed among many classes

Feature Envy
Method that calls more methods of a single
external class than the internal methods of its own
inner class

Intensive Coupling
When a method is tied to many other operations
in the system, whereby these provider operations
are dispersed only into one or a few classes

Refused Parent Bequest Subclass that does not use the protected methods
of its superclass

Shotgun Surgery
This anomaly is evident when you must change
lots of pieces of code in di�erent places simply to
add a new or extended piece of behavior

Tradition Breaker Subclass that provides a large set of services that
are unrelated to services provided by the superclass

is the manifestation of multiple code smells in a program location.
In this paper, we are especially interested in stinky code indicated
by smell agglomerations [26]. A smell agglomeration is a group
of inter-related code smells a�ecting the same program location,
such as a method, a class, a hierarchy or a package [26]. Thus, the
agglomeration is determined in the program by the co-occurrence
of two or more code smells in the same method, class, hierarchy or
package (or component). For code smells that co-occur in the three
last cases, we only consider they are part of a (class-, hierarchy-
or package-level) agglomeration if they are syntactically related
[26]. For instance, two classes can be related through structural
relationships in the program, such as method calls and inheritance
relationships. In this paper, we considered �ve categories of ag-
glomeration, namely intra-method, intra-class, hierarchical, and
intra-component [26]. For instance, a method that contains several
code smells represents an intra-method agglomeration. A full de-
scription of the categories of agglomeration considered in our study
is available in our complementary material [7]. The agglomerations
used in this study were detected with the Organic tool [24]. The
Organic tool is a plug-in developed for the Eclipse IDE.

2.2 Identifying Design Problem in Stinky Code
As explained in previous section, the identi�cation of design prob-
lems can be based on code smells. For instance, let us consider the
example illustrated in Figure 1. This �gure presents some classes
that belong to the Work�ow Manager substystem – a subsystem
of the Apache OODT (Object Oriented Data Technology) system
[20]. It is responsible for description, execution, and monitoring of
work�ows. Supposing that a developer is in charge of identifying
design problems in the Work�ow Manager. She can rely on the
analysis of code smells to spot program locations that may contain
a design problem. If she is analyzing the repository package, she
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Figure 1: Example of agglomeration in theWork�ow system

will notice that this package contains several code smells as indi-
cated by a smell agglomeration. This agglomeration is formed by 4
instances of the Feature Envy smell. As illustrated by Figure 1, each
of the Feature Envy occurrences a�ects a di�erent class. In this case,
3 classes implement the Work�owRepository interface. When the
developer analyze these classes based on the Feature Envy smell,
she will realize that these classes contain the smell because one of
their methods is more interested in other classes than in its own
hosting class. This happens because these methods are forced to
implement a method that was de�ned in the Work�owRepository
interface. That is, the smells in the agglomeration are indicating
that (the corresponding method in) the interface may contain a
design problem. In fact, this “forced implementation” becomes a
problem because these methods are implementing a concern that
should not have been implemented in their hosting classes. That
happens because of the fact that the Work�owRepository interface
processes multiple services; thus, any class that implements this
interface needs to handle more services than it actually should have
to.

In this example, the developer knows that the code smells in
the agglomeration have the same type (Feature Envy). Also, she
knows that 3 classes a�ected by the code smells implement the
same interface, as rei�ed in a hierarchical agglomeration. This
interface, in its turn, seems to provide non-cohesive services. Thus,
the developer can infer that a design problem, called Ambiguous
Interface, is a�ecting the Work�owRepostiory interface. On the other
hand, if she did not re�ect upon the code smell agglomeration, it
would be harder to her to identify the same design problem. One of
the reasons is the number of code smells spread over the 6 classes
and 2 interfaces within the package. Although the package contains
only 8 classes (Figure 1 only shows some of them), it has more
than 50 code smells. Thus, she has to analyze many smelly code
snippets in order to discard, postpone or further consider them in
the identi�cation of design problems.

Let us assume that the developer only reasons about each code
smell in isolation to identify the design problem, i.e., without taking
into consideration smell relationships in an agglomeration. Thus,
she can choose to analyze the DataSourceWork�owRepository class
�rst because the class contains the highest number of smells in the
package. Analyzing the 21 instances of code smells in the class,
the developer will notice that the class has smells related to high

coupling with other classes (Intensive Coupling and Dispersed Cou-
pling), low cohesion (Feature Envy), and overload of responsibilities
(God Class). However, all these smells may indicate di�erent prob-
lems. Thus, she has to extend the analysis to other classes in order
to gather more information that can potentially indicate a design
problem. Unfortunately, the other classes also have di�erent in-
stances of code smells, and these instances may not be related to
any design problem. Therefore, the developer can face di�culties
to �nd the relevant code smells that can help him to identify a
design problem. Thus, the analysis of stinky program locations, as
revealed by agglomerations, seems to be a better strategy. However,
there is limited empirical understanding about this phenomenon.

3 STUDY PLANNING
This section contains the settings of this study. Here, we present the
research questions, empirical procedures and other details about
our quantitative and qualitative analysis.

3.1 Research Questions
Previous studies suggest code smell agglomerations are consistent
indicators of design problems [26]. However, there is a need to
investigate whether developers can indeed identify design prob-
lems when exploring smell agglomerations. In order to address
this matter, we de�ned two research questions. The �rst one is
presented as follow:

RQ1. Does the use of agglomerations improve the precision of
developers in identifying design problems?

Research question RQ1 allows us to analyze whether code smell
agglomerations help developers to identify design problems with
high precision. To answer this question, we conducted a controlled
experiment with 11 professional developers. In this context, preci-
sion is measured based on the percentage of true positives indicated
by the developers – i.e., the percentage of correctly identi�ed design
problems. Precision is an important aspect of the identi�cation task.
Through the correct identi�cation of design problems, developers
are able to optimize their work by solving problems that really
impact design. On the other hand, the lack of precision would
lead software development teams to spend time and budget with
irrelevant tasks. For example, in companies adept to code review
practices [21], the lack of precision can lead developers to waste
time on refactoring tasks that do not contribute to system main-
tainability. The precise identi�cation of design problems is also
important in open source projects. For instance, the contributions
of eventual collaborators are often rejected by core developers due
to the presence of design problems [29]. Therefore, in this case,
a lack of precision could lead core developers to reject relevant
contributions due to “false design problems”.

In this study, we did not measure recall because of the high num-
ber of design problems in the analyzed systems. Together with the
system’s original developers, we created a ground truth of design
problems (Section 3.5) with more than 150 instances of design prob-
lems. Hence, it would be impracticable for participants to �nd all
the design problems in the system due to the time constraints in
the study (45 minutes). Consequently, they were expected to reach
a low recall value. Therefore, we focused on the precision.
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In order to measure if there was an improvement or not in the
precision, we are comparing the participants using agglomerations
with a control group. The control group comprises of participants
identifying design problems without agglomerations, but only with
(non-agglomerated) code smells. Thus, we analyzed the list of de-
sign problems identi�ed by the participants �rstly. In this analysis,
we use a ground truth to con�rm or refute each design problem
indicated by participants. Then, we compared the number of false
positives and true positives produced with the code smell agglom-
erations against the number of false and true positives produced
by the control group.

Someone could assume that developers would often bene�t from
the use of agglomerations in their quest for �nding design problems.
However, it is through the analysis of RQ1 that we will be able to
verify if developers can correctly identify more design problems us-
ing smell agglomerations. Regardless of the result, another question
that should be investigated concerns how to better support devel-
opers in exploring smell agglomerations. Even though a previous
study [26] has shown the strong relation between design problems
and code smells within an agglomeration, we do not know whether
and how the identi�cation of design problems with agglomerations
can be improved. The following question address this matter.

RQ2. How can the identi�cation of design problems with code
smell agglomerations be improved?

This question was addressed by conducting a qualitative analysis.
This analysis was based on the observation of participants during
the experiment and based on a post-experiment survey (Section 3.6).
This analysis is necessary because it provides a complementary
perspective on the identi�cation of design problems with agglom-
erations. We could reveal advantages and barriers on the use of
smell agglomerations. As reported in Section 4, the combination of
quantitative and qualitative analysis helped us to draw more well
grounded conclusions.

3.2 Experiment Procedures
We applied a quasi-experiment [28] in order to perform our study.
A quasi-experiment is an experiment in which the units or groups
are not assigned to conditions randomly. In our study, we could not
select participants randomly because we need to ensure that they
meet the requirements described in Section 3.3. The experiment was
conducted individually with each participant. They had to perform
the experiment in two steps with four tasks in each one. Both steps
comprise the same set of tasks; the only di�erence between the
steps was regarding the usage of agglomerations.

As explained before, we need to compare developers using ag-
glomeration with a control group. This comparison allowed us to
verify if there was an improvement in the precision when develop-
ers use agglomerations. Hence, the control group comprises the
developers that had to identify design problems with a list of non-
agglomerated code smells. Thus, we divided the participants into
two groups. The �rst group would identify design problems using
agglomerations in the �rst step. After that, they would identify
design problems using a list of non-agglomerated code smells in
the second step. The second group of participants would make the
identi�cation inversely: using the non-agglomerated code smells in
the �rst step and, then, using the agglomerations in the second step.

Table 2: Combinations of groups, projects and steps

Step 1 Step 2
Arrange Group Project Group Project

1 Agglomeration Project 1 Control Project 2
2 Agglomeration Project 2 Control Project 1
3 Control Project 1 Agglomeration Project 2
4 Control Project 2 Agglomeration Project 1

Thus, in each step, we have two groups of participants: a group
using agglomerations and a control group.

As each participant identi�es design problems twice (�rst and
second step), we had to select two software projects. Thus, each
participant could identify design problems using a di�erent project
in both steps. Another reason for providing two software projects
is to avoid bias with the learning curve. For example, supposing
that the participant uses the same project in both steps. She could
�nd more problems in the second step than in the �rst step. That
could happen because she can identify in the second step the same
problems that she identi�ed in the �rst step, plus other design
problems identi�ed only in the second step. This increase in the
number of design problems found in the second step would not be
due to the use of agglomerations, but rather due to the knowledge
acquired by the participant.

There are four possible combinations with the participants based
on the distribution between steps and software projects. Therefore,
all participants were divided into four groups equally to promote
a fair comparison. Table 2 presents the cross design for the four
arranges. The agglomeration group represents the group of partic-
ipants that identi�ed design problems using the agglomerations,
and the control group comprises the participants that identi�ed
design problems using the list of non-agglomerated code smells.

The study was composed by a set of six activities distributed
into three phases, as represented in Figure 2 described as follows.

Activity 1: Apply the questionnaire for subjects’ charac-
terization. The subjects’ characterization questionnaire is com-
posed of questions to characterize each participant, including aca-
demic degree, professional experience with Java programming,
background on code smells and Eclipse IDE.

Activity 2: Training Session. After de�ning the order of exe-
cution of each steps, the next step was to provide a training session
for the participants. The main objective of the training session
was to level the participant at the same background required to
understand and properly execute the experimental tasks. Thus,
they received training about basic concepts and terminologies. This
training was given only once for each participant before the �rst
steps of the experiment. The training consisted of a 15-minute pre-
sentation that covered the following topics: software design, code
smells, and design problems. The training session took approxi-
mately 15 minutes, and the participants could make any question
throughout it.

After the training, subjects received some artifacts that could
be used during the experiment. They received a list with a brief
description of the types of design problems presented in the train-
ing session. They also received a list with the description of basic
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Figure 2: The experimental design

principles of object-oriented programming and design. They re-
ceived a document containing: (i) a brief description of both project
systems (Section 3.3), and (ii) a very high-level description of their
design blueprint. We gave these documents because when they
have to conduct perfective maintenance tasks, they need to have
some minimal information about the systems to be maintained. The
design blueprint represented the high-level design in the view of
the project managers, but it was not detailed enough to support
the identi�cation of design problems. As it often occurs in practice,
the analysis of the source code is inevitably required to identify a
design problem.

Activity 3: System Introduction. We asked the participants
to read the document containing the description of the project in
which they would identify design problems. They had 20 minutes
to read the description and the design blueprint of the system. Thus,
they could start the identi�cation with a certain level of familiarity
with the software project.

Activity 4: Understanding the Task. In this activity, we ex-
plained how the participant could use the Organic tool (Section 2.1)
to collect either the agglomerations or the list of (non-agglomerated)
code smells. As the Organic tool was developed as an Eclipse plug-
in, we explained each one of the sections displayed in the Eclipse
IDE and that was related to the Organic tool. This activity lasted
approximately 10 minutes.

Activity 5: Identi�cation of Design Problems. In this ac-
tivity, the participant had 45 minutes to identify design problems
in the project. We emphasized to the participant the importance
of achieving the key goal of �nding design problems. For each
identi�ed design problem, the participant was asked to provide
the following information: (i) short description of the problem, (ii)
possible consequences caused by the problem, (iii) classes, methods
or packages realizing the design problem in the source code, and

(iv) the category(s) of agglomerations (Section 2.1) that helped him
to identify the design problems. If the participant was identifying
design problems as part of the control group, she needed to provide
almost the same information; the di�erence was that instead of pro-
viding the agglomeration (and its category), she needed to provide
the code smells that she used to identify the design problem.

Activity 6: Post-experiment Survey. In this activity, the par-
ticipant received a feedback form. This form provides a list of
questions, which enables the participant to expose her opinion
on the identi�cation of design problems. More details about this
activity are provided in Section 3.6.

After the sixth activity had been completed, we asked the same
participant to repeat all tasks in the second phase.

3.3 Software Projects and Participant Selection
In order to conduct the experiment as explained in the previous sec-
tion, we selected two software systems in which developers had to
identify design problems. We selected two programs that represent
components of the Apache OODT project [20]: Push Pull and Work-
�ow Manager. We selected subsystems of the OODT project since it
is a large heterogeneous system; then, we could choose subsystems
based on their diversity. Also, the Apache OODT project has a
well-de�ned set of design problems previously identi�ed by OODT
developers who actually implemented the systems (Section 3.5) [26];
thus, avoiding the introduction of false positive design problems in
the ground truth. In addition, the OODT project was developed for
NASA, used in other studies [15–18, 26] and with a global commu-
nity involved in its development. A brief description of the project
systems are presented as follow:

• Push Pull: it is the OODT component responsible for down-
loading remote content (pull) or accepting the delivery of
remote content (push) to a local staging area.

• Work�ow Manager: it is a component that is part of the
OODT client-server system. It is responsible for describing,
executing, and monitoring work�ows.

After choosing the projects, our next step was to recruit develop-
ers for the experiment. Thus, we sent a characterization question-
naire for a group of developers of our network. Their answers were
analyzed to determine which of them were eligible to participate
in the study based on the following requirements:

R1. Four years or more of experience with software develop-
ment and maintenance. We have chosen four years because
this is the average time used by companies such as Yahoo
[37] and Twitter [32] to classify a developer as experienced.

R2. No previous knowledge about Push Pull and Work�ow
Manager.

R3. At least basic knowledge about code smells.
R4. At least intermediary knowledge on Java programming

and Eclipse IDE.
We de�ned the knowledge in each topic based on a scale com-

posed of �ve levels: none, minimum, basic, intermediary, advanced
and expert. We included in the questionnaire a description of each
level, allowing the subjects to have a similar interpretation of the
answers. The description of such classi�cation can be found in the
complementary material [7]. Table 3 summarizes the characteristics
of each developer selected for the experiment.
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Table 3: Characterization of the Participants

ID Experience
in years

Education
Level

Knowledge
Java Code Smells Eclipse

P1 5 PhD Advanced Advanced Advanced
P2 6 Graduate Advanced Basic Advanced
P3 8 Master Advanced Intermediary Advanced
P4 4 Graduate Intermediary Basic Basic
P5 5 Master Advanced Intermediary Intermediary
P6 5 Graduate Intermediary Intermediary Intermediary
P7 12 Graduate Expert Advanced Expert
P8 5 Graduate Advanced Advanced Advanced
P9 10 Graduate Intermediary Intermediary Intermediary
P10 4 PhD Advanced Intermediary Advanced
P11 5 PhD Advanced Intermediary Advanced

3.4 Quantitative Analysis Procedures
In order to answer research question RQ1, we asked the experiment
participants to analyze two systems with the aim of identifying
design problems as described above. For each system, we analyzed
the precision of participants regarding the identi�cation of design
problems. The precision of participants was measured based on true
positives (TP) and false positives (FP). In this context, a true positive
is a candidate of design problem, as indicated by the participant, that
was con�rmed by a ground truth analysis. On the other hand, a false
positive is a candidate of design problem that was not con�rmed in
the ground truth analysis. Thus, the precision is calculated using
the following formula:

Precision =
TP

TP + FP
(1)

3.5 Ground Truth Analysis
We had to validate the identi�ed design problems as true positives
or false positive for each one of the analyzed systems. However, we
could not argue that a design problem was correct or not since we
were not involved with the design of each system. Thus, we relied
on the knowledge of the systems’ original designers and developers
to help us in validating the design problems. We certi�ed they
were the people who had the deepest knowledge of the design of
the investigated projects. We highlight that designers and devel-
opers used to validate the ground truth were not subjects of the
experiment.

We performed two steps to incrementally develop the ground
truth. First, we asked original OODT designers and developers to
provide us a list of design problems a�ecting the systems. They
listed the problems and explained the relevance of each one through
a questionnaire [7]. They also described which code elements were
contributing to the realization of each design problem. Second, we
identi�ed some design problems using a suite of design recovery
tools [11]. We asked developers of the systems to validate and com-
bine our additional design problems with their list. The procedure
for the additional identi�cation was the following: (i) an initial
list of design problems was identi�ed using a method presented in
[16], (ii) the developers had to con�rm, refute or expand the list,
(iii) the developers provided a brief explanation of the relevance of
each design problem, and (iv) when we suspected there was still
inaccuracies in the list of design problems, we discussed with them.

In the end, we had the ground truth of design problems validated
by the original designers and developers.

3.6 Qualitative Analysis Procedures
The experiment with professional developers helped us to assess
the precision of developers in the identi�cation of design prob-
lems with agglomerations. The results observed in the experiment
revealed that agglomerations can, in fact, help to improve the pre-
cision of some developers in the identi�cation of design problems
(Section 4.1). Nevertheless, we also observed that there is room
for improvements. Therefore, we conducted a qualitative analy-
sis to investigate what should be improved from the perspective
of professional software developers. Besides identifying possible
improvements, this analysis also helped us to understand what are
the main strengths of exploring agglomerations for design problem
identi�cation.

As described in Section 3.2, we asked the participants to provide
us feedback about the identi�cation of design problems. They
answered a post-experiment survey, and we use their answers to
conduct a qualitative analysis. The objective of the survey was to
gather participant’s opinion regarding (i) the (dis)advantages of
using the agglomerations or code smells to identify design problems,
(ii) whether the provided information could be easily understood,
(iii) which types of information were fundamental to identify design
problems, (iv) what she believes that should be done to improve
the identi�cation of design problems, (v) what she thought about
the use of the code smells for the identi�cation of design problems,
(vi) how the visualization mechanism provided by the Organic tool
a�ected her performance, and (vii) which types of code smell and
categories of agglomeration were the most useful for identifying
design problems. The results of this survey helped us to answer
research question RQ2.

By conducting the survey, we were able to gather the opinion of
developers regarding the use of code smell agglomerations. How-
ever, as reported by [8], what is reported in the survey may not
be what actually happens in practice. Therefore, to obtain more
reliable results, we also observed the participants of our experiment
during the identi�cation of design problems. This observation was
performed during the experiment and also in analyzes after the ex-
periment, through video and audio recorded during the experiment.
This analysis allowed us to look at code smell agglomerations from
the standpoint of professional software developers. It is important
to note that the observation of participants during the experiment
does not replace nor invalidate the survey. In fact, the combination
of observations and survey helped us to obtain a deeper understand-
ing and interpretation on the results observed in the experiment.

4 RESULTS AND ANALYSIS
The results of this study are organized in two sub-sections. Sec-
tion 4.1 presents the results of our quantitative analysis regarding
research question RQ1. Section 4.2 provides the results of our qual-
itative analysis to answer research question RQ2.

4.1 Do Agglomerations Improve Precision?
As described in Section 3.4, we conducted a quantitative analysis to
answer our �rst research question: Does the use of agglomerations
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Table 4: Precision

Agglomeration Group Control GroupID TP FP Precision TP FP Precision
1 2 1 66.67% 1 1 50%
2 0 3 0% 1 4 20%
3 3 2 60% 1 4 20%
4 2 0 100% 1 3 25%
5 4 0 100% 3 1 75%
6 1 0 100% 1 0 100%
7 1 1 50% 1 1 50%
8 3 0 100% 3 0 100%
9 0 1 0% 0 6 0%
10 0 0 - 1 1 50%
11 0 1 0% 0 0 -
All 16 9 64% 13 21 38.24%

improve the precision of developers in identifying design problems?.
Table 4 presents the precision results for each participant (rows).
The �rst column (ID) shows the identi�cation number of each partic-
ipant. The second column (Agglomeration Group) presents the true
positives (TP), false positives (FP) and precision for the participants
when they were provided with agglomerations to identify design
problems. Similarly, the third column (Control Group) presents the
true positives (TP), false positives (FP) and precision for the partic-
ipants in the control group, i.e., when they were provided with a
�at list of single smells.

Developers identi�ed a few more true positives using ag-
glomerations. We can see in Table 4 that the developers identi�ed
a few more design problems (TPs) when they were in the agglom-
eration group (16 TP design problems) than when they were in the
control group (13 TP design problems). As far as the per-subject
analysis is concerned, 4 developers (light gray rows) identi�ed more
true positives when they used agglomerations than when they used
the list of code smells in the control group. The use of agglomera-
tions clearly outperformed the use of smells in these 4 cases. On the
other hand, 2 participants (2, 10) did not identify any true positive
using the agglomerations, but they identi�ed a true positive each
in the control group. The rest of the participants (6, 7, 8, 9 and 11)
identi�ed the same number of true positives (5 TP design problems)
regardless the group.

Upon data analysis, we were able to reveal the main reason why
the 4 developers in the light gray rows identi�ed more true positive
design problems in the agglomeration group than in the control
group. As illustrated in the example in the Figure 1 (Section 2.2),
these 4 participants systematically used each agglomeration’s smell
as an indicator of the presence of a design problem. They ana-
lyzed each one of the code smells as a complementary symptom
of the presence of a design problem, which gave them increasing
con�dence to con�rm the occurrence of the design problem. Sur-
prisingly, we noticed the same behavior for the participant 8 even
when she was in the control group. She was capable of agglom-
erating the code smells on her own, starting from the individual
smells given in the �at list. Then, she used such agglomerations to
identify design problems in the control group. This is the reason
why she reached a precision value of 100% in both groups.

Agglomerations help developers to avoid false positives.
In general, developers identi�ed less false positives when they used
agglomerations (9 FP design problems) than when they used the
list of code smells (21 FP design problems). With the exception of
participant 11, all others identi�ed either less or equal number of
false positives when they were in the agglomeration group than
when they were in the control group. When we analyze the control
group, we can notice that more than half of the identi�ed design
problems are false positives (61,76%) while the agglomeration group
identi�ed only 36% of false positives.

After observing how developers identify design problems in the
control group, we noticed that they did not go further with the anal-
ysis of the elements. Usually, a developer needs to analyze other
classes in order to gather more information that can potentially
indicate a design problem as discussed in Section 2.2. When the par-
ticipants used the agglomerations, they analyzed multiple elements
because they analyzed each code smell within the agglomeration
even when the smells were in di�erent elements. This behavior did
not happen when participants were in the control group. In most
of the cases, the participants in the control group analyzed only
one code smell, which increased the likelihood of reporting false
positives. Then, they reported a design problem in the class due
to the presence of the code smell. However, some code smells are
not related to any design problem; thus, the developer can report a
false positive if she mistakenly considers a code smell that is not
related to a design problem. That explains why developers in the
control group found so many false positives. As developers tend to
look at all agglomeration’ smells before reporting a design problem,
the likelihood of reporting a false positive decreases, even when
there is a code smell that is a false positive by itself.

Agglomerations improve the precision. Even though we
cannot claim a statistical signi�cance in our results due to the sam-
ple size of this study, we can notice that developers achieve a higher
precision (64%) when they use agglomerations than when they use
code smells (38,24%). Therefore, this result suggests that agglom-
erations may improve the precision of developers in identifying
design problems, answering our �rst research question. However,
someone could expect that all developers using agglomerations
would signi�cantly outperform the control group. As a matter of
fact, we noticed some factors that explain, at least partially, why de-
velopers did not �nd much more design problems when they were
in the agglomeration group than when they were in the control
group. These factors are presented in the next subsection, and they
are useful to discover improvements for the identi�cation of design
problem with the analysis of stinky program locations.

4.2 How to Improve Design Problem
Identi�cation?

This section presents the answer for our second research question:
How can the identi�cation of design problems with code smell ag-
glomerations be improved? We conducted a qualitative analysis to
answer this question. As described in Section 3.6, this analysis was
based on the observation of participants during the identi�cation
of design problems as well as the analysis of the post-experiment
survey.
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Where to start from? As discussed in the previous section,
the participants identi�ed few more true positives using agglomer-
ations. Someone could expect that all developers using agglomera-
tions would signi�cantly outperform the control group. However,
we observed that participants spent much more time analyzing
the agglomerations than analyzing the smells in the control group.
That happened because they analyzed each code smell in the stinky
program location as previously explained Section 4.1. Furthermore,
sometimes the participants analyzed agglomerations that were not
related to any design problem. That is another factor that explains
the almost same number of true positives between both groups.

Unfortunately, almost all the participants analyzed irrelevant
agglomerations. Participants 6, 9, 10 and 11 were the ones that
su�ered the most from the analysis of irrelevant agglomerations.
Since these four participants faced such issue, they suggested in our
post-experiment survey that the Organic tool (Section 2.1) should
provide means to prioritize relevant agglomerations. Hence, they
would not spend time with the analysis of irrelevant stinky code.
This issue helps us to explain why they fell short in identifying
design problems through the analysis of agglomerations.

Need for prioritizing agglomerations. The aforementioned
need for prioritization shows that the time and e�ort required
to identify design problems is a key factor for developers; thus,
prioritization should be taking into consideration. As a matter
of fact, the prioritization of smelly code has been the focus of
recent research [2, 33, 34]. In [33], for example, we proposed and
assessed prioritization criteria for smell agglomerations. As we
have observed, the prioritized list of agglomerations would help a
developer to progressively analyze the agglomerations that have
more chance to represent design problems, discarding the irrelevant
ones. This would be especially useful in large legacy systems, in
which thousands of agglomerations may be detected. Nevertheless,
there is no prioritization criterion that is e�ective for any system
[33].

Based on our qualitative analysis, we noticed that existing crite-
ria for prioritization should select agglomerations that are cohesive.
A cohesive agglomeration in our context is an agglomeration in
which all the code smells are related to the same design problem.
If there is one code smell that is not related to the design problem,
such smell may direct the developer away from the design problem
in the worst case. In the best case, the developer will spend time
analyzing a code smell useless to identify the design problem. This
fact suggests that developers need accurate algorithms to �nd cohe-
sive agglomerations and to discard the less cohesive ones. However,
prioritization algorithms based on existing criteria are unable to do
this as far we are concerned. Consequently, the prioritization of
stinky program locations still poses as a challenging research topic.

Stinky code analysis is challenging. Besides the prioritiza-
tion issue, participants also su�ered to analyze the smelly source
code. As reported in Section 4.1, this problem was even worse for
agglomerations a�ecting larger program scopes, i.e., agglomera-
tions crosscutting implementation packages or class hierarchies.
We noticed that a large agglomeration requires that developers
reason about a wide range of scattered code smells. As they tend
to use each code smell as a symptom of design problem, they have
di�culties to correlate the multiple symptoms of an agglomera-
tion. This is a challenging task because the higher the number

of code elements involved in an agglomeration, the greater is the
volume of code that must be analyzed. Consequently, developers
will have more code to analyze, which increases the complexity of
the analysis.

Need for proper visualization mechanisms. In order to alle-
viate the analysis of stinky code, some participants suggested the
adoption of visualization mechanisms. For instance, participant
number 8 suggested the visualization of agglomerations through a
graph-based representation [13]. She mentioned that such visualiza-
tion would provide an abstract and general view of agglomerations.
The main advantage of this form of visualization is that the more
abstract a representation is, the less details will be displayed for
analysis. Consequently, the developers would not be overloaded
with details. At the same time, an abstract representation like the
graph-based visualization would help developers to see the full
extent of an agglomeration. After providing an abstract view, a
visualization mechanism could allow developers to progressively
explore the agglomeration details such as the types of smells, loca-
tion of stinky code and relationships among smells. Such details
could be displayed in the graph itself, in the source code, or in
complementary views.

Identi�cation of the design problem type. The di�culty in
analyzing agglomerations also raised the need for recommendations
on which types of design problem each smell agglomeration is
more likely to indicate. These recommendations would reduce
the e�ort required to decide whether the elements are a�ected by
design problems or not. For example, the agglomeration of Figure 1
occurs in classes of the same hierarchy that are implementing
the Work�owRepository interface. All smelly code of this stinky
program location present the same type of smell, which is the
Feature Envy. The occurrence of multiple Feature Envies in a unique
hierarchy, suggests that there is a problem in the interface, which
is spreading through all classes of the hierarchy. Therefore, to help
developers to decide whether there is a problem or not, the Organic
tool could suggest the analysis of this hierarchical agglomeration
trying to identify problems like Ambiguous Interface [12] and Fat
Interface [19], for example.

Suggestions of design problem types can help developers to focus
their attention is speci�c characteristics of the suggested design
problems. However, this kind of recommendation algorithm re-
quires multiple case studies to understand how and when each
form of agglomeration may represent speci�c types of design prob-
lem. As reported in our previous study [25], this is a challenging
research topic.

5 RELATEDWORK
Previous studies have not investigated if developers can indeed
�nd more design problems when they focus on inspecting stinky
program locations. Thus, we do not know whether the analysis of
multiple smells actually provides better precision for the identi�ca-
tion of design problems. In fact, related works propose techniques
for supporting the detection and visualization of both single smelly
code and inter-related smells. There are several studies that investi-
gated detection and visualization of single smelly code [9, 23, 27, 35].
However, we found few studies that investigated the detection of
inter-related smells a�ecting a program location [24, 34]. In this
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context, Vidal et. al. [34] present a tool for detecting code smells
and agglomerations of a (Java-based) system and ranking them ac-
cording to di�erent criteria [34]. The main bene�t of using this tool
is that developers can con�gure and extend the tool by providing
di�erent strategies to identify and rank the smells and groups of
smells (i.e., agglomerations). However, a disadvantage of this tool
is that it represents agglomeration without show the relation that
could exist between the code smells.

Regarding detection and visualization of single smelly code, Van
Emden and Moonen [9] present a tool that detects and visualizes
code smells in source code, displays the code structure as a graph
and maps code smells onto the attributes of that graph. This tool
can be problematic for several reasons. The visualization is built
assuming that code smells are concentrated in a particular region of
the code and that metrics will point reviewers there. This assump-
tion does not always hold; many code smells require understanding
the relationships between many interacting components and thus
are spread throughout the program. These relationships cannot be
represented by a simple mapping between code structure and color.

Other studies [17, 39] have investigated the e�ects of code smells
on the software design. For instance, Yamashita et al. [39] studied
collocated smells – code smells that interact in the same source
code �le –, and coupled smells – code smells that interact across dif-
ferent source code �les. Regarding software design, they observed
that limiting the analysis to collocated smells would reduce their
capability to reveal design problems, as coupled smells may reveal
critical design problems.

We also found studies that have investigated the use of informa-
tion other than code smells to identify design problems [22, 36]. In
this case, Mo et al. [22] proposed and evaluated the combination
of structural, history and design information to identify potential
design problems. Xiao et al. [36] introduced an approach that uses a
history coupling probability matrix to identify and quantify design
problems. However, one disadvantage of such studies is they rely
on design information, which may not exist for many software
systems. In addition, they have not evaluated from the perspective
of software developers.

Based on these related studies, we observed that they did not
present whether developers can indeed �nd more design problems
when they focus on inspecting stinky program location. Therefore,
our research covers this gap by investigating whether the analysis of
stinky program locations help developers in revealing more design
problems than the analysis of single smells.

6 THREATS TO VALIDITY
This section presents some threats that could limit the validity of
our main �ndings. For each threat, we present the actions taken to
mitigate their impact on the research results.

The �rst threat to validity is related to the number of participants
in the study. We have selected a sample of 11 participants, which
may not be enough to achieve conclusive results. However, instead
of drawing conclusions based on the quantitative results, we con-
ducted a qualitative analysis. In addition to conduct a qualitative
analysis, we de�ned a set of requirements to selecting developers
suitable for the study. Also, we conducted training sessions with
all participants. Such sections aimed to resolve any gaps in the

participants’ knowledge and any terminology con�icts, allowing
us to increase our con�dence in the results.

The second threat is related to possible misunderstandings dur-
ing the study. As we asked developers to conduct a speci�c software
engineering task and to answer a survey, they could have conducted
the study di�erent from what we asked. To mitigate this threat, we
assisted the participants during the entire study, and we make sure
of helping them to understand the experiment tasks and survey
questions. We highlighted that our help was limited to only clarify
the study in order to avoid some bias on our results.

Finally, there are two threats concerning the selected projects.
The �rst one is about the di�culty of the participants in understand-
ing the source code used in the experimental tasks. This di�culty
appears due to the complexity of the source code and time con-
straints to complete each task. The second threat is related to one
software project could be easier to identify design problem than the
other. We minimized the �rst threat by running a pilot-experiment
to de�ne a experimental time reasonable to perform the tasks. To
minimize the second threat, we selected projects with similar size,
complexity, and number of known design problems. We also have
trained all participants about each project. In addition, our results
suggest no variation in di�culty for identifying design problems
in the two projects.

7 CONCLUDING REMARKS
In this paper, we assessed if developers are e�ective in revealing
design problems when they reason about multiple code smells. We
conducted such investigation because recent studies have shown
that design problems are likely to be located in elements a�ected by
two or more smells. However, these studies do not evaluate if devel-
opers can reason about multiple smells to reveal design problems.
Thus, we conducted a multi-method study with 11 developers. In
the study, we asked them to identify design problems using code
smell agglomerations. After that, we compared their results with
the results of when they used the �at list of code smells to identify
design problems.

The data analysis showed that developers �nd most design prob-
lems when they use code smell agglomerations to identify design
problems, i.e., when they reason about stinkier program elements.
In addition, we noticed that agglomerations help developers to
avoid false positives. Therefore, our results suggest that agglomera-
tions may improve the precision of developers in identifying design
problems. When we analyze the survey’s answers and how the
developers identi�ed design problems, we noticed that developers
tended to have higher con�dence to identify the occurrence of non-
trivial design problems when using agglomerations. That happens
because the developers tend to analyze each agglomeration’s smell
before reporting a design problem. Consequently, the likelihood
of reporting a false positive decreases. In addition, we noticed that
agglomerations help them to understand complex stinky structures.

Our results also indicate that developers need better tool sup-
port to analyze stinky code. For instance, the developers need to
prioritize agglomerations that are most likely to indicate a design
problem. The prioritization algorithms are required because the
analysis of stinky code is di�cult and time-consuming. Thus, de-
velopers should focus on those agglomerations that more likely
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indicate design problems. In addition, we also noticed that develop-
ers need proper visualization mechanisms to support the analyses
of stinky code scattered across wider program locations, such as
hierarchies or packages. Some agglomerations are widely spread in
the source code; a single agglomeration may contain code smells
located in multiple class hierarchies. Thus, the developers have
a large program scope to analyze. They may have di�culty to
visualize how the code smells are related in the agglomeration. A
graph-based visualization can help developers to �gure out how
the code smells are related in the agglomeration.

The results of our study encourage the use of smell agglom-
erations to identify design problems. However, there are some
issues that should be addressed before developers can explore smell
agglomerations in a time-e�ective manner. As discussed above,
there is a need to provide mechanisms for better prioritizing and
visualizing smell agglomerations. In the future, we plan to imple-
ment these mechanisms in Organic (Section 2.1) and evaluate their
e�ectiveness.
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